• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo Vetorial, Campos conservativos...

Cálculo Vetorial, Campos conservativos...

Mensagempor killerkill » Seg Mar 16, 2015 17:24

Pessoal, estou tentando entender a ideia intuitiva de um campo vetorial conservativo pro caso de integrais de linha. Meus conceitos estão muito embaralhados e gostaria da ajuda de alguém pra ajudar a organiza-los. Pelo que eu entendi até agora no meu curso, a integral de linha pode ser interpretada de varias formas, como uma área sobre uma curva até a função (espécie de cortina), como densidade em determinado ponto da curva e na parte onde estou tendo mais dificuldades, em um campo vetorial. Nessa ultima eu me embolo completamente quando se envolve o conceito de campo conservativo. Em uma curva fechada C1, imerso num campo conservativo, se selecionarmos um ponto "A" pertencente a essa curva e realizarmos uma volta completa na curva, a integral de linha (ou deveria eu dizer trabalho?) sobre essa curva é igual a zero. Ou seja, independe do caminho. Acho que não entendi o porquê. O único caso que consegui imaginar tentando fazer uma lógica foi o seguinte: imaginei uma curva em 3 dimenões imersa no campo gravitacional. Se eu partir de um ponto P1 na parte mais alta da curva(mais distante do centro do campo) e largar uma partícula imaginária, a força gravitacional irá atuar até que ela chegue ao ponto mais baixo da curva realizando um trabalho W1. Pro caso dessa partícula retornar ao ponto P1 o trabalho seria W2, de mesma intensidade que W1 porém agora contrária ao campo, ou seja, com valor negativo. Nesse caso, intuitivamente fica claro pensar que essa integral seria igual a zero. Essa ideia é correta?
killerkill
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 25
Registrado em: Ter Ago 09, 2011 22:39
Formação Escolar: GRADUAÇÃO
Área/Curso: Eg. Elétrica
Andamento: cursando

Re: Cálculo Vetorial, Campos conservativos...

Mensagempor adauto martins » Sex Mar 20, 2015 12:39

seja f:V\rightarrow V,onde V um espaço vetorial sobre um corpo K...
f e dito conservativo \Leftrightarrow \exists uma funçao u:V\rightarrow k,tal q. f=\Delta u,onde \Delta u e o gradiente u em V...usando o teorema de stokes,mostra-se q. ...

\oint_{C}^{}f.dx=\oint_{C}^{}\Delta u.dx=0,ou seja vai independer dos pontos inicias e finais,ou indepedente do caminho...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}