por ViniciusAlmeida » Sáb Fev 14, 2015 10:09
Seja
![f(x)= [cos x], -\pi \leq x \leq \pi f(x)= [cos x], -\pi \leq x \leq \pi](/latexrender/pictures/6d2672b0e6524334517a98ed45e26c9b.png)
. (Os colchetes simbolizam a função piso)
a) Calcule cada limite, se existir.
I)

II)

III)

IV)

b) Para quais valores de a existe

?
Sei que a função maior inteiro representa o maior inteiro que não ultrapasse o valor de X mas não consigo responder essa questão e não tenho o gabarito. Obrigado desde já!
-
ViniciusAlmeida
- Usuário Ativo

-
- Mensagens: 24
- Registrado em: Seg Fev 09, 2015 12:13
- Formação Escolar: GRADUAÇÃO
- Andamento: cursando
por adauto martins » Qua Fev 18, 2015 10:56
![f(x)=cosx\Rightarrow \left[f(x) \right]=\left[cosx \right] f(x)=cosx\Rightarrow \left[f(x) \right]=\left[cosx \right]](/latexrender/pictures/a6654b1aa87894edcc9dbcc4ac19a9a8.png)
por definiçao temos:
![\left[f(x) \right]\preceq \left[f(x) \right]\prec \left[f(x) \right]+1,p/\left[f(x) \right]\in Z \left[f(x) \right]\preceq \left[f(x) \right]\prec \left[f(x) \right]+1,p/\left[f(x) \right]\in Z](/latexrender/pictures/55ba575bf9c1de38cf4f8c6731589961.png)
,entao
![\left[cox \right]\preceq cosx \prec \left[cosx \right]+1 \left[cox \right]\preceq cosx \prec \left[cosx \right]+1](/latexrender/pictures/13ee90b3145aa84f4c0c9ced41d2a821.png)
logo...I)
![\lim_{x\rightarrow 0}\left[cosx \right]\preceq \lim_{x\rightarrow 0}cosx\prec \lim_{x\rightarrow 0}cosx+1\Rightarrow \lim_{x\rightarrow 0}\left[cosx \right]=cos0=1 \lim_{x\rightarrow 0}\left[cosx \right]\preceq \lim_{x\rightarrow 0}cosx\prec \lim_{x\rightarrow 0}cosx+1\Rightarrow \lim_{x\rightarrow 0}\left[cosx \right]=cos0=1](/latexrender/pictures/b13c775b7b0b4405b61dc46eaba3a38e.png)
II)
![\lim_{x\rightarrow {\pi/2}^{-}}\left[cosx \right]\preceq \lim_{x\rightarrow {\pi/2}^{-}}cosx=cos(\pi/2)=0 \lim_{x\rightarrow {\pi/2}^{-}}\left[cosx \right]\preceq \lim_{x\rightarrow {\pi/2}^{-}}cosx=cos(\pi/2)=0](/latexrender/pictures/6612b303fba0eb51c8b1adf775a0e002.png)
...
o mesmo valor p/III,IV
b)por definiçao

-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
por adauto martins » Qui Fev 19, 2015 15:01
uma correçao:
nao existe o
![\lim_{x\rightarrow a}\left[f(x) \right] \lim_{x\rightarrow a}\left[f(x) \right]](/latexrender/pictures/b9cfe93e359820cd9c7df3519c27f248.png)
,pois p/diferentes valores de x,o limite tem o mesmo valor...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Limite] Gráfico e limite para função maior inteiro
por Raphaela_sf » Qui Abr 05, 2012 19:26
- 1 Respostas
- 6478 Exibições
- Última mensagem por LuizAquino

Qui Abr 05, 2012 20:53
Cálculo: Limites, Derivadas e Integrais
-
- [Limites]-Função maior inteiro
por antonioferro » Sáb Fev 13, 2016 15:25
- 0 Respostas
- 1955 Exibições
- Última mensagem por antonioferro

Sáb Fev 13, 2016 15:25
Cálculo: Limites, Derivadas e Integrais
-
- [Limite] Limite de funções reais de várias variáveis
por Bianca_R » Dom Nov 04, 2012 17:17
- 1 Respostas
- 4559 Exibições
- Última mensagem por MarceloFantini

Dom Nov 04, 2012 19:37
Cálculo: Limites, Derivadas e Integrais
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1543 Exibições
- Última mensagem por DanielFerreira

Sex Abr 17, 2015 20:32
Funções
-
- Limite de funções
por jeremiashenrique » Sex Abr 17, 2015 16:07
- 1 Respostas
- 1555 Exibições
- Última mensagem por adauto martins

Seg Abr 20, 2015 20:57
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 09:10
Veja este exercício:
Se A = {

} e B = {

}, então o número de elementos A

B é:
Eu tentei resolver este exercício e achei a resposta "três", mas surgiram muitas dúvidas aqui durante a resolução.
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero?
existe inverso de zero?
zero é par, certo?
sendo x um número natural, -x é múltiplo de x?
sendo z um número inteiro negativo, z é múltiplo de z?
sendo z um número inteiro negativo, -z é múltiplo de z?
A resposta é 3?
Obrigado.
Assunto:
método de contagem
Autor:
Molina - Seg Mai 25, 2009 20:42
Boa noite, sinuca.
Se A = {

} você concorda que n só pode ser de 1 a 20? Já que pertence aos naturais?
Ou seja, quais são os divisores de 20? Eles são seis: 1, 2, 4, 5, 10 e 20.
Logo, o conjunto A é
A = {1, 2, 4, 5, 10, 20}
Se B = {

} você concorda que x será os múltiplos de 5 (positivos e negativos)? Já que m pertence ao conjunto Z?
Logo, o conjunto B é
B = {... , -25, -20, -15, -10, -5, 0, 5, 10, 15, 20, 25, ...
Feito isso precisamos ver os números que está em ambos os conjuntos, que são:
5, 10 e 20 (3 valores, como você achou).
Vou responder rapidamente suas dúvidas porque meu tempo está estourando. Qualquer dúvida, coloque aqui, ok?
sinuca147 escreveu:No processo de determinação dos elementos do conjunto B o que achei foi basicamente os múltiplos de cinco e seus opostos, daí me surgiram estas dúvidas:
existe oposto de zero? sim, é o próprio zero
existe inverso de zero? não, pois não há nenhum número que multiplicado por zero resulte em 1
zero é par, certo? sim, pois pode ser escrito da forma de 2n, onde n pertence aos inteiros
sendo x um número natural, -x é múltiplo de x? Sim, pois basta pegar x e multiplicar por -1 que encontramos -x
sendo z um número inteiro negativo, z é múltiplo de z? Sim, tais perguntando se todo número é multiplo de si mesmo
sendo z um número inteiro negativo, -z é múltiplo de z? Sim, pois basta pegar -z e multiplicar por -1 que encontramos x
A resposta é 3? Sim, pelo menos foi o que vimos a cima
Bom estudo,

Assunto:
método de contagem
Autor:
sinuca147 - Seg Mai 25, 2009 23:35
Obrigado, mas olha só este link
http://www.colegioweb.com.br/matematica ... ro-natural
neste link encontra-se a a frase:
Múltiplo de um número natural é qualquer número que possa ser obtido multiplicando o número natural por 0, 1, 2, 3, 4, 5, etc.
Para determinarmos os múltiplos de 15, por exemplo, devemos multiplicá-lo pela sucessão dos números naturais:
Ou seja, de acordo com este link -5 não poderia ser múltiplo de 5, assim como 5 não poderia ser múltiplo de -5, eu sempre achei que não interessava o sinal na questão dos múltiplos, assim como você me confirmou, mas e essa informação contrária deste site, tem alguma credibilidade?
Há e claro, a coisa mais bacana você esqueceu, quero saber se existe algum método de contagem diferente do manual neste caso:
Para determinar os elementos do conjunto A, eu tive de basicamente fazer um lista de vinte dividido por todos os números naturais maiores que zero e menores que vinte e um, finalmente identificando como elementos do conjunto A os números 1, 2, 4, 5, 10 e 20. Acho que procedi de maneira correta, mas fiquei pensando aqui se não existiria um método mais "sofisticado" e prático para que eu pudesse identificar ou ao menos contar o número de elementos do conjunto A, existe?
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.