• Anúncio Global
    Respostas
    Exibições
    Última mensagem

dúvida, derivar seno e cosseno até a terceira ordem

dúvida, derivar seno e cosseno até a terceira ordem

Mensagempor PORTER » Qui Dez 11, 2014 08:10

ola pessoal, quando tenho que derivar até a terceira ordem, ainda tenho dúvidas, gostaria de saber se da forma que resolvi está certo, se estiver errado, por favor me explique:

f(x) = cos(x) + sen(x)

f'(x) =-sen(x) + cos(x)
f''(x) = -cos(x) + sen(x)
f'''(x) = -sen(x) + cos(x)

obrigado.
PORTER
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Ter Nov 04, 2014 17:08
Formação Escolar: GRADUAÇÃO
Área/Curso: informatica
Andamento: cursando

Re: dúvida, derivar seno e cosseno até a terceira ordem

Mensagempor adauto martins » Sex Dez 12, 2014 11:34

f(x)=cosx+senx...
f'=-senx+cosx
f''=-cosx-senx
f'''=-(-senx)-(cosx)=senx-cosx
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.