Alguém poderia mostrar como se chegou a essa igualdade? Não a entendi. É uma passagem de um exercício de funções de duas variáveis aleatórias.
![\int_{-\infty}^{\infty}\left[\frac{d}{dz}\int_{-\infty}^{z-x}f_{XY}(x,y)dy\right]dx=\int_{-\infty}^{\infty}f_{XY}(x,z-x)dx \int_{-\infty}^{\infty}\left[\frac{d}{dz}\int_{-\infty}^{z-x}f_{XY}(x,y)dy\right]dx=\int_{-\infty}^{\infty}f_{XY}(x,z-x)dx](/latexrender/pictures/eaeeab1ab797ff823bcd4fccb45baf44.png)
Obrigado!
![\int_{-\infty}^{\infty}\left[\frac{d}{dz}\int_{-\infty}^{z-x}f_{XY}(x,y)dy\right]dx=\int_{-\infty}^{\infty}f_{XY}(x,z-x)dx \int_{-\infty}^{\infty}\left[\frac{d}{dz}\int_{-\infty}^{z-x}f_{XY}(x,y)dy\right]dx=\int_{-\infty}^{\infty}f_{XY}(x,z-x)dx](/latexrender/pictures/eaeeab1ab797ff823bcd4fccb45baf44.png)

. Então F é derivável e F'(x) = f(x).
,pois podemos fazer como se segue:
,regra de leibinitz...
,sem uma definiçao de F(x,y) nada podemos concluir com 

, então 

,desde de q. F(x,y)seja continua e diferenciavel em (a,b)...qto ao exercicio e o erro...
,meu erro foi
,mas persiste o problema do limite p/

,

,q.recai na situaçao anterior...para q.
,F tem q. ser uma funçao tipo 

Voltar para Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
zig escreveu:

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio. ![{0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20} {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}](/latexrender/pictures/c0100c6f4d8bdbb7d54165e6be7aff04.png)
da seguinte forma:
.
da seguinte forma:
.