• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral de função com expoente irracional

Integral de função com expoente irracional

Mensagempor carlos_araujo » Sex Dez 05, 2014 16:54

Olá,
estou com uma dúvida ao resolver a seguinte integral:

I=\int_{0}^{{\beta}x} {\left( 1-\frac{y}{{\beta}x \right)}^{n} dy

onde \beta e x são constantes.
Bem, se n for um número RACIONAL diferente de -1, pode-se fazer da seguinte maneira:

\int_{}^{} {\left( a+bx \right)}^{n} dx = \frac{{\left( a+bx \right)}^{n+1}}{b\left( n+1 \right)}

e assim, teria como resultado daquela integral o seguinte:

I=\frac{{\beta}x}{n+1}

Porém, n tem o valor de:

n=1,4+23,4{\left( \frac{90-fck}{100} \right)}^{4}

onde fck varia de 50 a 90, podendo assumir valor IRRACIONAL. Por exemplo, quando fck é igual a 60, n é igual a 1,58954.

Enfim, minha dúvida é se eu posso integrar como fiz acima ou se tenho de usar exponencial ({u}^{n}={e}^{n\ ln(u)}), séries infinitas ou outro artifício por conta de n ser IRRACIONAL. E, como deveria resolver esta integral?

Desde já agradeço!!!
carlos_araujo
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sex Dez 05, 2014 16:09
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: Integral de função com expoente irracional

Mensagempor adauto martins » Qua Dez 10, 2014 15:27

um numero irracional e um numero real,entao vc pode integrar como integral de funçoes reais...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.