por Vencill » Qui Nov 13, 2014 17:05
Bom dia a todos!
Estou com dúvida no seguinte exercício:
Se F(x)=f(g(x)), com f(-2)=8, f' (-2)=4, f' (5)=3, g(5)=-2 e g'(5)=6. Encontrar F' (5)
Pelo que eu entendi eu tenho que substituir na formula F(x)=f(g(x)) os valores de acordo com F'(5), mas eu fiz a derivada e deu 0.
Poderiam me ajudar no exercício se possível hoje?
O mesmo para o exercício abaixo que é no mesmo sentido:
Se F(x)=f(xf(xf(x))) com f(1)=2, f(2)=3, f' (1)=4, f'(2)=5 e f' (3)=6, determinar F' (1).
No caso deste exercicio o resultado é para ser F' (1)=198.
Muito obrigado pessoal, sou novo neste fórum e já curti!
-
Vencill
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Nov 13, 2014 16:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Pessoa Estranha » Qui Nov 13, 2014 22:51
Olá!
Vou tentar ajudar. Pelo que entendi, podemos tentar resolver assim:
Como queremos F'(5), podemos, antes, obter a F'(x), que consiste em aplicar a Regra da Cadeia. Por exemplo, vamos derivar


. Daí, seguindo essa ideia, temos:
F'(x) = g'(x).f '(g(x))
Então, vem que:
F'(5) = g'(5).f '(g(5)) = 6.f '(-2) = 6 . 4 = 24
Essa é a resposta certa? Entendeu?

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Vencill » Qui Nov 13, 2014 23:06
Nossa cara entendi sim faz sentido, Vlw!
Eu posso seguir a mesma ideia para o problema abaixo?
Se F(x)=f(xf(xf(x))) com f(1)=2, f(2)=3, f' (1)=4, f'(2)=5 e f' (3)=6, determinar F' (1).
pode me ajudar com esse?
-
Vencill
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Nov 13, 2014 16:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Pessoa Estranha » Qui Nov 13, 2014 23:49
Vencill escreveu: Se F(x)=f(xf(xf(x))) com f(1)=2, f(2)=3, f' (1)=4, f'(2)=5 e f' (3)=6, determinar F' (1).
Olá!
Então, eu estava justamente pensando neste quando vc respondeu. É mais complicado. Mas, eu vou tentar. Na minha primeira tentativa, a resposta deu 120. Estou achando que aqueles "x" que não estão dentro da f, isto é, f(x), que aparece no meio das contas deve ser considerado uma função, a função identidade. Então, fica assim:
Seja x = g (x). Temos: F(x) = f(g(x)f(g(x).f(x))) (preste bastante atenção nos parênteses, ficou um pouco confuso, mas é isso).
Então, F'(x) = (g(x)f(g(x).f(x)))' . f '(g(x)f(g(x).f(x))).
Agora, vamos separar:
(*) = (g(x)f(g(x).f(x)))' = g'(x) . f(g(x).f(x)) + f '(g(x).f(x)) . g(x) = 1 . f(xf(x)) + f '(x.f(x)) . x = f(xf(x)) + xf '(xf(x)). Daí, aplicando em x = 1, temos:
(*) = f(1.f(1)) + 1. f '(1f(1)) = f(2) + f '(2) = 3 + 5 = 8.
(**) = f '(g(x)f(g(x).f(x))) = f '(x(f(xf(x))) = f '(1.f(1.f(1))) = 6.
Bom, acaba que F'(1) = 8 . 6 = 48.
De novo eu não encontrei a resposta certa. Sinto muito. Depois, posso tentar com mais calma. Mas, a ideia é essa. Neste caso, temos muitas composições. E eu não consigo encontrar o meu erro. Desculpe. O que você acha? Tente aplicar essa ideia.

-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Pessoa Estranha » Qui Nov 13, 2014 23:49
A resposta do anterior era 24 mesmo?
-
Pessoa Estranha
- Colaborador Voluntário

-
- Mensagens: 262
- Registrado em: Ter Jul 16, 2013 16:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Matemática
- Andamento: cursando
por Vencill » Sex Nov 14, 2014 15:59
Aham do anterior era 24 mesmo eu confirmei!!
Vlw!
-
Vencill
- Usuário Ativo

-
- Mensagens: 10
- Registrado em: Qui Nov 13, 2014 16:54
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Função de Primeiro Grau
por Najyh » Seg Mai 03, 2010 23:22
- 3 Respostas
- 4778 Exibições
- Última mensagem por MarceloFantini

Ter Mai 04, 2010 22:41
Funções
-
- Equação do primeiro grau
por isaiaspereira » Qui Jan 27, 2011 00:53
- 3 Respostas
- 2724 Exibições
- Última mensagem por Elcioschin

Qui Jan 27, 2011 14:02
Álgebra Elementar
-
- Equações do primeiro grau
por epicfail » Seg Fev 07, 2011 16:49
- 4 Respostas
- 2778 Exibições
- Última mensagem por DanielFerreira

Sex Fev 11, 2011 15:09
Álgebra Elementar
-
- função do primeiro grau
por Abelardo » Qua Abr 27, 2011 19:35
- 2 Respostas
- 3940 Exibições
- Última mensagem por Abelardo

Qui Abr 28, 2011 11:08
Álgebra Elementar
-
- Função do Primeiro Grau
por Rafael16 » Sex Jan 11, 2013 21:20
- 2 Respostas
- 3807 Exibições
- Última mensagem por DanielFerreira

Sex Jan 11, 2013 22:27
Funções
Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.