• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Uso de otimização

[Derivadas] Uso de otimização

Mensagempor mikari » Dom Nov 09, 2014 20:01

Sobre o problema:
"Uma loja de camisas vende dois modelos de camisetas, Federer e Nadal. O dono da loja compra os dois modelos pelo mesmo preço, R$ 50,00, e estima que, se as camisetas Federer forem vendidas por x reais a unidade e as camisetas Nadal y reais a unidade, os fregueses comprarão 40-50x+40y camisetas Federer e 20+60x-70y camisetas Nadal por dia. Quanto o dono da loja deve cobrar pelas camisas para obter o maior lucro possível?"

Fiz o sistema de lucro como:
L(x,y) = (40-50x+40y)(x-50) + (20+60x-70y)(y-50)
e fazendo as derivadas parciais de x e y obtenho
Lx(x,y) = -100x-460+100y
Ly(x,y) = -140y+1520+100x

O que igualando a zero daria um preço de R$21,90 para X e R$26,50 para Y para que o lucro fosse o máximo possível.
Por que este meu resultado está diferindo do gabarito?
mikari
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Nov 09, 2014 19:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59