• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Derivadas] Derivada da função

[Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 08:25

Pessoal como resolver essa:

Encontre a derivada da função f(x)=3cos^{2}(e^{-x})

Eu até achava fácil, porém ao tentar fazer com a formula U^{p}\rightarrow PU^{p-1}.U^{'} o resultado que eu chego é bem diferente da resposta que tem na apostila(resposta em anexo). Se possível deixar bem detalhado o passo a passo para que eu possa entender onde que estou errando, obrigado ^^

Resposta: f^{'}(x)=-6e^{-x}cos(e^{-x})sen(e^{-x})
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Sáb Nov 01, 2014 12:06

você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Sáb Nov 01, 2014 17:48

young_jedi escreveu:você tem que aplicar a regra da cadeia mais de uma vez

f(x)=3cos^2(e^{-x})

f'(x)=3.2cos(e^{-x}).(cos(e^{-x}))'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(e^{-x})'

f'(x)=3.2cos(e^{-x}).(-sen(e^{-x})(-e^{-x})

f'(x)=6.e^{-x}cos(e^{-x}).sen(e^{-x})



Entendo, mas pq nesse caso em especifico eu preciso usar duas vezes ?
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 09:28

é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Derivadas] Derivada da função

Mensagempor neoreload » Dom Nov 02, 2014 10:14

young_jedi escreveu:é porque você tem a função

e^{-x}

dentro da função

cos(e^{-x})

e a função

cos(e^{-x})

dentro da função

cos^2(e^{-x})


Muito obrigado amigo, agora entendi ^^. Só uma coisa, então o gabarito está errado não é? pois lá tem o 6 como -6 no final. Obrigado mais uma vez ^^
neoreload
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 27
Registrado em: Sáb Ago 09, 2014 16:15
Formação Escolar: GRADUAÇÃO
Andamento: cursando

Re: [Derivadas] Derivada da função

Mensagempor young_jedi » Dom Nov 02, 2014 10:29

É verdade, mas o sinal de menos acho que é um erro de gabarito mesmo.

Valeu !
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.