por jeison87 » Seg Set 22, 2014 21:11
deve se construir um deposito retangular sem tampa com volume v= 24 m^3. o custo por m^2 do material utilizado é de R$ 600 para m^2 do fundo, R$ 450 o m^2 para dois lados opostos e R$ 300 o m^2 para os lados restantes.determine as dimensoes do deposito que minimizam os custos.
cheguei em um sistema de 3 equacoes e tentei varias formas mas consido resolver.mais consegui por diferenciais so que tem que ser por langrange. segue até aonde eu cheguei:
(1) 600Y +900Z = ?.YZ (2) 600Z + 600X=?.XZ
(3) 600Y +900X=?.XY
respostas obtidas por diferenciais: X= 2,51 Y= 3,78 Z= 2,52
des de ja agradeço pela atenção
-
jeison87
- Novo Usuário

-
- Mensagens: 1
- Registrado em: Seg Set 22, 2014 20:17
- Formação Escolar: GRADUAÇÃO
- Área/Curso: eng. elétrica
- Andamento: cursando
por adauto martins » Qua Out 08, 2014 16:06
ate onde vc fez,teremos entao:
600y+900z=

yz,
600z+600x=

xz,
600y+900x=

xy,
xyz=24
multiplicando as equaçoes por x,y,e z tal q. xyz=24,teremos:
600yx+900xz=24

,600zy+600xy=24

,600yz+900xz=24

...igualando as equaçoes e resolvendo em funçao das variaveis x,y,z e

...chega-se a resposta...
-
adauto martins
- Colaborador Voluntário

-
- Mensagens: 1171
- Registrado em: Sex Set 05, 2014 19:37
- Formação Escolar: EJA
- Área/Curso: matematica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Multiplicadores de Lagrange
por Zkz » Sex Jun 05, 2009 21:00
- 0 Respostas
- 1903 Exibições
- Última mensagem por Zkz

Sex Jun 05, 2009 21:00
Cálculo: Limites, Derivadas e Integrais
-
- Multiplicadores de Lagrange
por luciamoura » Sex Nov 26, 2010 17:55
- 0 Respostas
- 1741 Exibições
- Última mensagem por luciamoura

Sex Nov 26, 2010 17:55
Cálculo: Limites, Derivadas e Integrais
-
- Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 20:01
- 1 Respostas
- 1481 Exibições
- Última mensagem por timoteo

Dom Jan 13, 2013 23:07
Cálculo: Limites, Derivadas e Integrais
-
- Calculo - multiplicadores de Lagrange
por brunnoguilherme » Dom Jan 13, 2013 20:04
- 1 Respostas
- 1503 Exibições
- Última mensagem por Russman

Dom Jan 13, 2013 22:12
Cálculo: Limites, Derivadas e Integrais
-
- Máximos e mínimos (Lagrange)
por Danilo » Qui Mai 29, 2014 21:23
- 0 Respostas
- 1024 Exibições
- Última mensagem por Danilo

Qui Mai 29, 2014 21:23
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.