• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada reta tangente ao gráfico

Derivada reta tangente ao gráfico

Mensagempor Carolminera » Qua Jul 23, 2014 11:33

Determine a equação da reta tangente a elipse :


\frac{x^2}{3} + \frac{y^2}{5} = 1


no ponto (Xo, Yo).


Alguém pode me ajudar?
Obrigada!
Carolminera
Usuário Ativo
Usuário Ativo
 
Mensagens: 19
Registrado em: Qua Jul 02, 2014 15:57
Formação Escolar: GRADUAÇÃO
Área/Curso: Física Médica
Andamento: cursando

Re: Derivada reta tangente ao gráfico

Mensagempor Russman » Qua Jul 23, 2014 21:08

Vamos deduzir uma fórmula útil que determina a reta tangente ao ponto (x_0,y_0) dada qualquer função y=y(x). Esta você poderá usar sempre que uma questão envolver a busca da reta tangente a um gráfico em um ponto.

Seja r(x) = ax+b a reta tangente ao gráfico de y=y(x) no ponto (x_0,y_0). Sabemos que a inclinação da reta r(x) é a=y'(x_0). Entenda como a derivada de y(x) aplicada no ponto cujo x=x_0.

Daí, r(x) = y'(x_0) x + b. Agora, se a reta tangencia a função então ambas valem o mesmo valor no ponto de tangência. Ou seja,

r(x_0) = y(x_0)

Assim, y'(x_0) x_0 + b = y(x_0) de onde b = y(x_0) - x_0 y'(x_0).

Portanto, a reta tangente ao gráfico de y=y(x) no ponto (x_0,y_0) é r(x) = y'(x_0) x + y(x_0) - x_0 y'(x_0).

Tente prosseguir.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 15 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}