• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral definida] - dúvida em exercício

[integral definida] - dúvida em exercício

Mensagempor natanaelskt » Qua Jul 02, 2014 02:13

Não estou entendendo como faz esse exercício. o A eu entendi. porém esses outros dois eu não sei fazer. eu não entendo essas expressões em cima da integral. alguém poderia me explicar como resolve?
Anexos
dúvida nas integrais..PNG
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [integral definida] - dúvida em exercício

Mensagempor e8group » Qua Jul 02, 2014 14:04

Note que \boxed {\frac{d}{dx}  \left( \int_{q(x)}^{p(x) }  g(t) dt   \right)  =  g(p(x)) \cdot p'(x) - g(q(x)) \cdot q'(x) } .

Sem rigor, apenas p/ termos uma noção de um resultado ...

Para começar seja f(x) = \int_{a}^x g(t) dt (a constante ) . Segue-se

\frac{f(x+h) - f(x)}{h} =  \frac{1}{h} \left( \int_{a}^{x+h}  g(t)dt  -  \int_{a}^{x}  g(t)dt  \right)  =

=  \frac{1}{h} \int_x^{x+h}  g(t) dt .

Quando h \to 0 , a integral de g sobre o intervalo [x,x+h] pode ser aproximada por g(x) \cdot h e com isso f'(x) = g(x) .Alternativamente ,deixe I ser um intervalo fechado de extremos x, x+h .Temos que

h \cdot \sup_{\zeta \in I } g(\zeta) \geq \int_x^{x+h}  g(t) dt \geq h \cdot \inf_{\zeta \in I } g(\zeta) sse

\sup_{\zeta \in  I}  g(\zeta)  \geq  \frac{1}{h}   \int_x^{x+h}  g(t) dt \geq  \inf_{\zeta \in I } g(\zeta) .

Quando h\to 0, tem-se que g(x) = \sup_{\zeta \in I } g(\zeta) \geq \frac{1}{h}  \int_x^{x+h}  g(t) dt \geq  \inf_{\zeta \in I } g(\zeta) = g(x) e portanto f'(x) = g(x) .

Como consequência da fórmula obtida juntamente com a regra da cadeia , vamos ter [f(p(x))]' = f'(p(x)) \cdot p'(x) = g(p(x))p'(x) . Agora vamos obter a fórmula destacada .Para tal ,fixe x e suponha p(x) \neq q(x) (o caso q(x) = p(x) é trivial) . Neste caso , existe k entre p(x) e q(x) .(O intervalo não é degenerado) e assim

\int_{q(x)}^{p(x)}  g(t) dt = \int_{q(x)}^k g(t) dt  +  \int_{k}^{p(x)}   g(t) dt   = \int_{k}^{p(x)}   g(t) dt -  \int_{k}^{q(x)}   g(t) dt   . . Daí, ao derivarmos com respeito à x e utilizando os resultados obtidos teremos a fórmula destacada .

Agora basta aplicar a fórmula em cada exercício e fazer a pior parte, contas !
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 12:41

pessoal eu achei como resultado 180 toneladas,entretanto sei que a questão está erra pela lógica e a resposta correta segundo o gabarito é 1.800 toneladas.
me explique onde eu estou pecando na questão. resolva explicando.

78 – ( CEFET – 1993 ) Os desabamentos, em sua maioria, são causados por grande acúmulo de lixo nas encostas dos morros. Se 10 pessoas retiram 135 toneladas de lixo em 9 dias, quantas toneladas serão retiradas por 40 pessoas em 30 dias ?


Assunto: dúvida em uma questão em regra de 3!
Autor: Douglasm - Qui Jul 01, 2010 13:16

Observe o raciocínio:

10 pessoas - 9 dias - 135 toneladas

1 pessoa - 9 dias - 13,5 toneladas

1 pessoa - 1 dia - 1,5 toneladas

40 pessoas - 1 dia - 60 toneladas

40 pessoas - 30 dias - 1800 toneladas


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:18

pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.


Assunto: dúvida em uma questão em regra de 3!
Autor: leandro moraes - Qui Jul 01, 2010 13:21

leandro moraes escreveu:pessoal já achei a resposta. o meu erro foi bobo rsrsrrs errei em uma continha de multiplicação, é mole rsrsrsr mas felizmente consegui.

valeu meu camarada.