• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Função inversa

Função inversa

Mensagempor Janoca » Seg Jun 30, 2014 00:37

Essa questão postei nesse tópico, porque estou com dificuldade nessa função inversa, e consequentemente posso me atrapalhar na derivada desse tipo de função inversa.
Questão:
Seja f(x)=\frac{{e}^{x}- {e}^{-x}}{2}.

Mostre que f é inversível e determine sua inversa g.


a resposta desta questão é y=ln(x+\sqrt[]{x^2+1}), manipulei algebricamente mas não sei onde errei.
Janoca
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 30
Registrado em: Sex Jun 06, 2014 16:47
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Função inversa

Mensagempor e8group » Seg Jun 30, 2014 02:03

Fica subtendido que f foi definida de \mathbb{R} em \mathbb{R} .

As informações (a),(b) e (c) são equivalentes ; e também (d) e (e) os são .

(a) f é injetora
(b) f admite inversa à esquerda
(c) f é estritamente monótona

(d) f é sobrejetora
(e) f admite inversa à direita

Se f satisfaz um dos itens (a),(b) ou (c) juntamente com (d) ou (e) , então f é bijetora .(admite inversa)

Vamos mostrar que f é sobrejetora .

Uma forma possível : (TVI)

\lim_{x\to + \infty} f(x) = +\infty e \lim_{x\to  - \infty} f(x) = -\infty .Como f é contínua , (pois é escrita como soma de duas funções contínuas ) , então dado qualquer k \in (-\infty , +\infty) , o TVI garanti que existe c em (-\infty , +\infty) t.q f(c) = k o que implica f sobrejetiva .

Quanto a injetividade segue por f'(x) > 0 , \forall x (verifique )[isso significa que f é estritamente crescente ] .

Outra forma ...

Fixe x real (a princípio arbitrário , se precisar de + hipóteses , trabalhe em cima dos casos isoladamente) . Note que \frac{e^{x} -e^{-x}}{2}  \in \mathbb{R} . Deixe

y =  \frac{e^{x} -e^{-x}}{2}  (*) isto equivale 2y = e^{x} -e^{-x} =  e^x - (e^x)^{-1} . Agora resolva a eq. para e^x e depois tome o ln em ambos lados . (Dica use a fórmula resolvente e.q segundo grau ) .

A ideia é ...

Para cada x que escolho consigo obter um único y correspondente através de (*) , e reciprocamente ; para cada y que escolho consigo obter um único x obtido pela solução acima .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.