• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[integral indefinida] - dúvida

[integral indefinida] - dúvida

Mensagempor natanaelskt » Sáb Jun 28, 2014 09:25

estou com dúvida na resolução deste exercício de integral indefinia.caiu na minha prova e eu errei. na verdade,nem sei como começa.
obrigado desde já. postei a foto do exercício em anexo.
Anexos
integral indefinida.PNG
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [integral indefinida] - dúvida

Mensagempor e8group » Sáb Jun 28, 2014 14:13

Novamente friso para anexar imagens se for necessário .

Bem , o processo natural é integrar por partes sucessivas vezes . Derivando-se ln(x) e multiplicando por um monômio da forma x^n reduzirá a potência deste termo .

Não gosto de fazer contas . Um certo dia precisei computar \int_{A} x^5 e^x dx , entretanto percebi que

\int x^n e^x dx =  e^x \cdot \sum_{k=0}^n (-1)^k   D^k(x^n) . Onde o operador D^k a cada função k vezes diferenciável faz corresponde a k-ésima derivada da função , convencionado que D^0 (f(x)) =f(x) . Pode-se provar a fórmula por indução .

Agora computaremos \int y^n ln(y) dy . Duas substituições simples . Primeiro , deixe

z = ln(y) \implies \begin{cases}        dz = \frac{dy}{y}  \end{cases} \\ y =e^z .

Assim ,

\int y^n ln(y) dy  =  \int y^{n+1}  \frac{ln(y)}{y} dy  =   \int (e^z)^{n+1}  z  dz = \int e^{(n+1)z} z  dz .

Segundo , deixe (n+1)z = x ....


\int e^{(n+1)z} z  dz  =  ... = \frac{1}{(n+1)^2} \int x \cdot e^x dx .

Está última integral pode ser calculada por partes ... ou simplesmente aplicação da formula ,
\frac{1}{(n+1)^2} \int x \cdot e^x dx = \frac{1}{(n+1)^2} e^x \cdot   \underbrace{\sum_{k=0}^1 (-1)^k D^k(x) }_{(-1)^0 \cdot D^0(x) + (-1)^1 D^1(x) = x  - 1 } , ou seja

\frac{1}{(n+1)^2} \int x \cdot e^x dx =  e^x (x-1)  =  \frac{1}{(n+1)^2}  e^{(n+1)z}(-1+(n+1)z)  = \frac{1}{(n+1)^2}  e^{(n+1)ln(y)}(-1+(n+1)ln(y))  =   \frac{1}{(n+1)^2}   y^{n+1} (-1+ [n+1]ln(y) ) , em particular com n = 3 terá o resultado .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [integral indefinida] - dúvida

Mensagempor natanaelskt » Sáb Jun 28, 2014 16:28

muito obrigado sathiago. estou com dúvida em mais alguns exercícios. eu posso continuar postando em imagens? eu não sei utilizar o látex. já tentei,mas tô perdendo muito tempo e acaba saindo errado.
muito obrigado. me ajudou muito
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [integral indefinida] - dúvida

Mensagempor e8group » Sáb Jun 28, 2014 17:16

Não há de quê . Mais dúvidas compartilha com a comunidade .Como disse é uma das regras da casa deixar organizado o fórum . No inicio é difícil digitar as equações usando o LaTeX , e nesta fase recomendo o site http://www.codecogs.com/latex/eqneditor.php o qual contém uma tabela com os símbolos .Assim , por exemplo , clicando sobre o simbolo da integral , terá o código \int e a imagem compilada gerando tal simbolo . Mas , se não conseguir acredito que pode sim continuar a postar os exercícios como tem feito até você se adaptar com o LaTeX .Importante é não deixar dúvidas pendentes . E outro fator importante , tente expor o que você tentou , quais as dúvidas e etc .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: