• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] - dúvida

[limites] - dúvida

Mensagempor natanaelskt » Sáb Jun 28, 2014 09:35

Fala,galera. preciso de ajuda neste exercício. não sei calcular estes limites. se alguém souber eu agradeceria se me ajudasse. postei o exercício em anexo-foto.
Anexos
limite.PNG
natanaelskt
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 32
Registrado em: Seg Mar 11, 2013 15:06
Formação Escolar: ENSINO MÉDIO
Andamento: formado

Re: [limites] - dúvida

Mensagempor e8group » Sáb Jun 28, 2014 13:26

Por favor , apenas anexe imagens se for necessário .

O primeiro vale \frac{1}{2} e o segundo 0 .

Dicas :

Para o primeiro , limites fundamentais \lim_{x \to 0} sin(x)/x = 1 e \lim_{x \to 0} (x+1)^{1/x} = e .(p/ usar tal resultados , multiplique o numerador e denominador por 1 + cos x e também use que ln(1+x)/x = ln(1+x)^{1/x} .)

Para o segundo , estude o comportamento de x^x no + infinito .Note que \frac{x^2}{x^3+1} = x^2 \cdot  \left(  \frac{1}{x^3 +1} \right) . É sempre verdade que x^3 +1 \geq  x^3  > 0 para todo x > 0 o que equivale dizer que \frac{1}{x^3+1} \leq \frac{1}{x^3} para todo x > 0 ou ainda \frac{x^2}{x^3+1} \leq \frac{x^2}{x^3}  =  \frac{1}{x} para todo x > 0 . E assim , temos a desigualdade

\left(\frac{x^2}{x^3+1} \right)^x \leq  \frac{1}{x^x} , \forall x > 0 .

Observe também a positividade de \left(\frac{x^2}{x^3+1} \right)^x .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.