• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de Equações diferenciais com Autovalores Complexos

Sistemas de Equações diferenciais com Autovalores Complexos

Mensagempor barbara-rabello » Ter Jun 03, 2014 21:32

Bom, estou estudando sistemas de equações diferenciais e acabei de ver a parte com autovalores complexos, onde usamos Euler para resolver.
Esta parte consegui entender. A questão é, aprendi para casos com autovalores imaginários puros, mas como faço quando, ao estudar algum sistema,
encontrar autovalores da forma a + bi? Não consegui achar nenhum exemplo para me ajudar nessa dúvida, tentei pensar sozinha, mas na hora de usar
Euler estou me enrolando e não consigo fazer. Alguém tem algum exemplo de como faço nesses casos?
Obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Sistemas de Equações diferenciais com Autovalores Comple

Mensagempor Russman » Qui Jun 05, 2014 16:40

e^{a+bi} = e^a . e^{ib} = e^a (\cos(b) + i \sin(b))

Em geral, é assim que interpreta-se a exponencial complexa.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Sistemas de Equações diferenciais com Autovalores Comple

Mensagempor barbara-rabello » Sex Jun 06, 2014 19:14

Muito obrigada, ajudou bastante!!!!!

Tenho uma outra dúvida: Se tenho um sistema de três equações, por exemplo, então encontro três autovalores e autovetores, respectivamente.
Por exemplo, encontro um autovalor f + gi, e seu respectivo autovetor é \begin{pmatrix}
   ai \\
   b+di \\ 
   c+ei \\ 
\end{pmatrix}
Assim, na hora que calculo Euler ficaria assim:?
\begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}
+ i
\begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}\left[cos(gt)+ isen(gt) \right]

Aplicando algumas propriedades algébricas, teríamos:

\left[ \begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}.{e}^{f}.cos(gt)- \begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}.sen(gt)\right]{c}_{1} + \left[\begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}.cos(gt) + \begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}.{e}^{f}.sen(gt)\right]{c}_{2}

Eu tenho que calcular isso para os três autovalores e autovetores e depois somar tudo, ou posso simplesmente calcular somente para um autovalor e, seu respectivo autovetor, para encontrar uma solução geral?
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: