• Anúncio Global
    Respostas
    Exibições
    Última mensagem

comprimento da curva ln(1-x^2), 0<=x<=1/2.

comprimento da curva ln(1-x^2), 0<=x<=1/2.

Mensagempor nandooliver008 » Sex Jun 06, 2014 13:07

gostaria de saber qual o comprimento da curva:
y=ln(1-{x}^{2}), 0\leq x \leq \frac{1}{2}

não sei nem como começar.
nandooliver008
Usuário Ativo
Usuário Ativo
 
Mensagens: 21
Registrado em: Sáb Mai 17, 2014 23:40
Formação Escolar: GRADUAÇÃO
Área/Curso: c&t
Andamento: cursando

Re: comprimento da curva ln(1-x^2), 0<=x<=1/2.

Mensagempor Man Utd » Dom Jul 27, 2014 00:37

Olá :D

Da fórmula do comprimento do arco : C=\int_{a}^{b} \; \sqrt{1+[f^{\prime}(x)]^2} \; dx, veja que :


f'(x)=-\frac{2x}{1-x^2}

[f'(x)]^2=\frac{4x^2}{(1-x^2)^2}



logo :


\int_{0}^{\frac{1}{2}} \; \sqrt{1+\frac{4x^2}{(1-x^2)^2} } \; dx


\int_{0}^{\frac{1}{2}} \; \sqrt{\frac{(1-x^2)+4x^2}{(1-x^2)^2} } \; dx


\int_{0}^{\frac{1}{2}} \; \sqrt{\frac{1-2x^2+x^4+4x^2}{(1-x^2)^2} } \; dx


\int_{0}^{\frac{1}{2}} \; \sqrt{\frac{x^4+2x^2+1}{(1-x^2)^2} } \; dx


\int_{0}^{\frac{1}{2}} \; \sqrt{\frac{(x^2+1)^2}{(1-x^2)^2} } \; dx


\int_{0}^{\frac{1}{2}} \; \frac{x^2+1}{1-x^2} \; dx=\cdots


avance....
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.