• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de Equações diferenciais com Autovalores Complexos

Sistemas de Equações diferenciais com Autovalores Complexos

Mensagempor barbara-rabello » Ter Jun 03, 2014 21:32

Bom, estou estudando sistemas de equações diferenciais e acabei de ver a parte com autovalores complexos, onde usamos Euler para resolver.
Esta parte consegui entender. A questão é, aprendi para casos com autovalores imaginários puros, mas como faço quando, ao estudar algum sistema,
encontrar autovalores da forma a + bi? Não consegui achar nenhum exemplo para me ajudar nessa dúvida, tentei pensar sozinha, mas na hora de usar
Euler estou me enrolando e não consigo fazer. Alguém tem algum exemplo de como faço nesses casos?
Obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Sistemas de Equações diferenciais com Autovalores Comple

Mensagempor Russman » Qui Jun 05, 2014 16:40

e^{a+bi} = e^a . e^{ib} = e^a (\cos(b) + i \sin(b))

Em geral, é assim que interpreta-se a exponencial complexa.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Sistemas de Equações diferenciais com Autovalores Comple

Mensagempor barbara-rabello » Sex Jun 06, 2014 19:14

Muito obrigada, ajudou bastante!!!!!

Tenho uma outra dúvida: Se tenho um sistema de três equações, por exemplo, então encontro três autovalores e autovetores, respectivamente.
Por exemplo, encontro um autovalor f + gi, e seu respectivo autovetor é \begin{pmatrix}
   ai \\
   b+di \\ 
   c+ei \\ 
\end{pmatrix}
Assim, na hora que calculo Euler ficaria assim:?
\begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}
+ i
\begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}\left[cos(gt)+ isen(gt) \right]

Aplicando algumas propriedades algébricas, teríamos:

\left[ \begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}.{e}^{f}.cos(gt)- \begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}.sen(gt)\right]{c}_{1} + \left[\begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}.cos(gt) + \begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}.{e}^{f}.sen(gt)\right]{c}_{2}

Eu tenho que calcular isso para os três autovalores e autovetores e depois somar tudo, ou posso simplesmente calcular somente para um autovalor e, seu respectivo autovetor, para encontrar uma solução geral?
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.