• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Sistemas de Equações diferenciais com Autovalores Complexos

Sistemas de Equações diferenciais com Autovalores Complexos

Mensagempor barbara-rabello » Ter Jun 03, 2014 21:32

Bom, estou estudando sistemas de equações diferenciais e acabei de ver a parte com autovalores complexos, onde usamos Euler para resolver.
Esta parte consegui entender. A questão é, aprendi para casos com autovalores imaginários puros, mas como faço quando, ao estudar algum sistema,
encontrar autovalores da forma a + bi? Não consegui achar nenhum exemplo para me ajudar nessa dúvida, tentei pensar sozinha, mas na hora de usar
Euler estou me enrolando e não consigo fazer. Alguém tem algum exemplo de como faço nesses casos?
Obrigada!
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando

Re: Sistemas de Equações diferenciais com Autovalores Comple

Mensagempor Russman » Qui Jun 05, 2014 16:40

e^{a+bi} = e^a . e^{ib} = e^a (\cos(b) + i \sin(b))

Em geral, é assim que interpreta-se a exponencial complexa.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado

Re: Sistemas de Equações diferenciais com Autovalores Comple

Mensagempor barbara-rabello » Sex Jun 06, 2014 19:14

Muito obrigada, ajudou bastante!!!!!

Tenho uma outra dúvida: Se tenho um sistema de três equações, por exemplo, então encontro três autovalores e autovetores, respectivamente.
Por exemplo, encontro um autovalor f + gi, e seu respectivo autovetor é \begin{pmatrix}
   ai \\
   b+di \\ 
   c+ei \\ 
\end{pmatrix}
Assim, na hora que calculo Euler ficaria assim:?
\begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}
+ i
\begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}\left[cos(gt)+ isen(gt) \right]

Aplicando algumas propriedades algébricas, teríamos:

\left[ \begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}.{e}^{f}.cos(gt)- \begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}.sen(gt)\right]{c}_{1} + \left[\begin{pmatrix}
   a \\
   d\\ 
   e\\ 
\end{pmatrix}.{e}^{f}.cos(gt) + \begin{pmatrix}
   0\\
   b\\ 
   c\\ 
\end{pmatrix}.{e}^{f}.sen(gt)\right]{c}_{2}

Eu tenho que calcular isso para os três autovalores e autovetores e depois somar tudo, ou posso simplesmente calcular somente para um autovalor e, seu respectivo autovetor, para encontrar uma solução geral?
barbara-rabello
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 49
Registrado em: Sex Mar 02, 2012 16:52
Formação Escolar: GRADUAÇÃO
Área/Curso: matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Funções
Autor: Emilia - Sex Dez 03, 2010 13:24

Preciso de ajuda no seguinte problema:
O governo de um Estado Brasileiro mudou a contribuição previdenciária de seus contribuintes. era de 6% sobre qualquer salário; passou para 11% sobre o que excede R$1.200,00 nos salários. Por exemplo, sobre uma salário de R$1.700,00, a contribuição anterior era: 0,06x R$1.700,00 = R$102,00; e a atual é: 0,11x(R$1.700,00 - R$1.200,00) = R$55,00.
i. Determine as funções que fornecem o valor das contribuições em função do valor x do salário antes e depois da mudança na forma de cobrança.
ii. Esboce seus gráficos.
iii. Determine os valores de salários para os quais:
- a contribuição diminuiu;
- a contribuição permaneceu a mesma;
- a contribuição aumentou.