• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Limites com duas raízes

[LIMITES] Limites com duas raízes

Mensagempor Atom » Dom Mai 25, 2014 20:22

Como resolve limites quando eles tem duas raízes?

Por exemplo:

lim quando x tende à 0 de f(x), f(x)= [(raíz de x+3) - (raíz de 3)] / x. Resposta: raíz de 2 / 4

ou

lim quando x tende à 1 de f(x), f(x)= [(raíz de x+3) - (2)] / (raíz de x) - (1). Resposta: 1 / 2

Valeu!
Atom
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Dom Mai 25, 2014 20:14
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [LIMITES] Limites com duas raízes

Mensagempor e8group » Dom Mai 25, 2014 21:59

Por favor ,utilize LaTeX . (Sem impor condições em a e b deixo a vc ) Pense qual a relação entre a -b e \sqrt{a} - \sqrt{b} . Você sabe fatorar a^2 -b^2 ? Se sim também saberá \sqrt{a} - \sqrt{b} .Dica :

a= (\sqrt{a})^2  , b = (\sqrt{b})^2 . Então a-b = (\sqrt{a})^2 - (\sqrt{b})^2 =  (\sqrt{a} - \sqrt{b})(\sqrt{a} +\sqrt{b}) e assim \frac{a-b}{\sqrt{a} +\sqrt{b}} = \sqrt{a} -\sqrt{b} .

Entendeu porque eu disse que se você souber fatorar a^2 -b^2 vc tbm consegue para potencias de 2 inversa . Note que este resultado também é obtido por simplesmente multiplicar pelo conjugado . OK, se tivéssemos diferenças de raiz cubica ,novamente aqui lhe pergunto , vc sabe fatorar a^3 - b^3 ? Se sim , também saberá para a^{1/3} -b^{1/3} . Mesma dica : a = (a^{1/3})^3  , b = (b^{1/3})^3 .

E podemos generalizar ....

Se sabemos fatorar a^n - b^n também saberemos a^{1/n} - b^{1/n} , pois , a = (a^{1/n})^n , b = (b^{1/n})^n .

Entendeu ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59