• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integração por decomposição

Integração por decomposição

Mensagempor lalmeida » Sex Mai 02, 2014 00:54

Gostaria de saber a solução de ? (x²- 2)²/x dx
lalmeida
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Sex Mai 02, 2014 00:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: Integração por decomposição

Mensagempor e8group » Sex Mai 02, 2014 16:48

O integrando é escrito como razão de polinômios p(x)/q(x)  ,  p(x) = (x^2 -2)^2 = x^4 - 4x^2 + 4e q(x) = x . Temos deg(q) = 1 < deg(p) = 4 , então podemos dividir p por q , e obter

p(x)/q(x)  =  x^3 - 4x +  \frac{4}{x} . Já sabemos integrar polinômio e expressões sob forma A/(Bx +C) .Qual a resposta ?
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}