• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[limites] Dificuldade com raízes

[limites] Dificuldade com raízes

Mensagempor baloso » Sex Abr 25, 2014 19:22

Olá pessoal, tentei resolver esses limites por conjugados e outras propriedades mas não consegui. Alguém pode me falar quais propriedades eu uso? Mt obg
a) \lim_{x\rightarrow2} \frac{\sqrt[2]{x^2+x-2} - \sqrt[2]{x^2-x+2}}{\sqrt[2]{x+2}-2}

b) \lim_{x\rightarrow2}  \frac{\sqrt[]{2x^2-3x+2}-2}{\sqrt[]{3x^2-5x-1}-1}

c) \lim_{x\rightarrow0} \frac{\sqrt[3]{2x^2-3x+2}-2}{x-x^2}

d) Calcule a,b \in \Re de forma que \lim_{x\rightarrow3} \frac{x^2 +ax+b}{x-3} = 5

e)\lim_{x\rightarrow4} \frac{\sqrt[]{x}-2}{\sqrt[]{x-4}}

f)\lim_{x\rightarrow1} \frac{\sqrt[]{x+2}-\sqrt[]{3}}{x^3-1}

g)\lim_{x\rightarrow11} \frac{\sqrt[]{x}- \sqrt[]{11}}{\sqrt[]{x+11}- \sqrt[]{22}}
baloso
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 25, 2014 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [limites] Dificuldade com raízes

Mensagempor e8group » Sáb Abr 26, 2014 00:36

Boa noite . De acordo com as regras da casa , uma questão por tópico .

Vou te dar uma dica item (d) .

Suponha inicialmente \lim_{x\to 3} x^2 +ax + b \neq 0 . Neste caso o limite são será indeterminado ,logo podemos usar uma das regras operacionais , a saber , a regra do quociente para obter "(algum número diferente de zero )/(número muito próximo de zero) " , o resultado entre aspas sabemos é que +\pm  \infty(dependo do sinal do número) .Absurdo ! Logo só podemos ter

\lim_{x\to 3}   x^2 + ax + b =  0 .Logo , x^2 + ax + b =  (x-3)(x-r_2) (forma fatorada) [r_2 a segunda raiz do polinômio .

Agora utilizando a forma fatora e a hipótese do limite ser 5 , encontre r_2 que em consequência obterá as constantes pedidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: [limites] Dificuldade com raízes

Mensagempor baloso » Seg Abr 28, 2014 19:33

Eu entendi o que você quis dizer. Só olhando deu pra identificar que a raiz é 2.
Então temos que usar (x-3)(x+2) para que a = -1 e b = -6 e lim = 5.
Porém eu não faço a mínima ideia de como provar isso... Eu não posso simplesmente falar que a segunda raiz é 2 e pronto né?
baloso
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Sex Abr 25, 2014 18:54
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59