• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limites

Limites

Mensagempor marinalcd » Sex Abr 18, 2014 16:48

Boa tarde,

estou estudando limites pela definição (por\epsilon    e   \delta).

E tenho os seguintes limites: \lim_{\infty} a{x}^{13}+b{x}^{2} = \infty e \lim_{-\infty} a{x}^{13}+b{x}^{2} = -\infty.
Como provo pela definição de limites (epsilon e delta) que os limites acima são verdadeiros? Já tentei resolver mas não consigo provar.
marinalcd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 143
Registrado em: Sex Abr 27, 2012 21:25
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia
Andamento: cursando

Re: Limites

Mensagempor e8group » Sex Abr 18, 2014 21:20

Infinito é uma quantidade ilimitada que é maior que qualquer número real .

O que significa dizer :

(i) \lim_{x\to +\infty} f(x) = +\infty ?

(ii) \lim_{x\to -\infty} f(x) = -\infty ?

Expectativa :

(i) Im(f) não é limitado superiormente e não importa o quão grande seja M > 0 , será sempre possível determinar N > 0 tal que x > N \implies f(x) > M .

(ii)

Im(f) não é limitado inferiormente e não importa o quão grande seja M < 0 (negativo), será sempre possível determinar N < 0 tal que x < N \implies f(x) < M .


Exemplo :

Considere p(x) = 3x^2 + \pi x +  x e^x .Dado , M > 0 , seja N = \sqrt{\frac{M}{4+\pi}} > 0

Temos que se x > N então x^2 > N^2 = \frac{M}{4+\pi}}  \implies   3x^2 + \pi x^2 + x^2 =x^2(4+\pi)  > M . Por outro lado , e^x > x  ; x^2 > x , logo p(x) = x^2 + \pi x +  x e^x > 3x^2 + \pix^2 + x^2 e com isso p(x) > M .

\lim_{x\to +\infty} p(x) = + \infty  .\equiv .  \forall M > 0 ,  \exists N = N(M) > 0   ;  x > N \implies p(x) >  M .

Se quer rigor consulte um livro de cálculo 1 como Calculus do Spivak ( cálculo analítico) ou análise real .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}