• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo de Limites

Cálculo de Limites

Mensagempor nathilopes » Qua Mar 05, 2014 18:29

Essa eu fiz mas gostaria de ter certeza do meu resultado.

lim x->2 \frac{\sqrt{x}-2\sqrt{2}}{\sqrt{x+8}-4}

lim x-> [tex]\frac{x-8}{\sqrt{{x}^{2}+6x+16}-2}

lim x->2 \frac{2-8}{\sqrt{{2}^{2}+6.2+16}-2}

lim x->2 \frac{-6}{\sqrt{32}-2}
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Cálculo de Limites

Mensagempor Man Utd » Qua Mar 05, 2014 21:48

Por favor Edite sua mensagem.Não entendi bem. :y:
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: Cálculo de Limites

Mensagempor nathilopes » Qui Mar 06, 2014 00:57

Lim x->2 \sqrt{2}-2\sqrt{2}/\sqrt{x+8}-4

Essa é a questão
nathilopes
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Qua Mar 05, 2014 02:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Administração
Andamento: cursando

Re: Cálculo de Limites

Mensagempor Man Utd » Qui Mar 06, 2014 12:51

nathilopes escreveu:Lim x->2 \sqrt{2}-2\sqrt{2}/\sqrt{x+8}-4

Essa é a questão




\lim_{ x \to 2} \;  \frac{\sqrt{2}-2\sqrt{2}}{\sqrt{x+8}-4}



=\frac{\sqrt{2}-2\sqrt{2}}{\sqrt{2+8}-4}


=\frac{\sqrt{2}-2\sqrt{2}}{\sqrt{10}-4}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 7 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.