• Anúncio Global
    Respostas
    Exibições
    Última mensagem

LIMITE

LIMITE

Mensagempor Ana Maria da Silva » Qua Fev 26, 2014 20:22

PODERIA ME AJUDAREM COM A SOLUÇÃO DESTES 2 LIMITES?

Calcule os limites: \lim_{(X,Y)\rightarrow(0,0)}\frac{XY}{\sqrt{{X}^{2}+{Y}^{2}}} E \lim_{(X,Y)\rightarrow(0,0)}\frac{1-COS\sqrt{XY}}{X}}
Ana Maria da Silva
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 83
Registrado em: Qua Mar 27, 2013 15:09
Formação Escolar: ENSINO MÉDIO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: LIMITE

Mensagempor young_jedi » Sex Fev 28, 2014 23:55

a primeira por uma mudança de variaveis

x=rsen(\theta)

y=r.cos(\theta)

\lim_{r\to0}\frac{r.sen(\theta)r.cos(\theta)}{\sqrt{r^2.sen^2(\theta)+r^2.cos^2(\theta)}}

\lim_{r\to0}r.sen(\theta)cos(\theta)

como -1<sen(\theta).cos(\theta)<1 para qualquer angulo

então

\lim_{r\to0}r.sen(\theta)cos(\theta)=0

para a segunda

\lim_{(x,y)\to(0,0)}\frac{1-cos\sqrt{xy}}{x}

\lim_{(x,y)\to(0,0)}\frac{1-cos\sqrt{xy}}{x}.\frac{1+cos\sqrt{xy}}{1+cos\sqrt{xy}}

\lim_{(x,y)\to(0,0)}\frac{1-cos^2\sqrt{xy}}{x.(1+cos\sqrt{xy})}

\lim_{(x,y)\to(0,0)}\frac{sen^2\sqrt{xy}}{x.(1+cos\sqrt{xy})}

\lim_{(x,y)\to(0,0)}\frac{sen^2\sqrt{xy}}{xy}\frac{y}{1+cos\sqrt{xy}}

\lim_{(x,y)\to(0,0)}\frac{sen^2\sqrt{xy}}{\sqrt{xy}^2}\frac{y}{1+cos\sqrt{xy}}

\lim_{(x,y)\to(0,0)}\frac{sen\sqrt{xy}}{\sqrt{xy}}.\frac{sen\sqrt{xy}}{\sqrt{xy}}\frac{y}{1+cos\sqrt{xy}}=1.1.\frac{0}{1+1}=0
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: