• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo: limite com raiz dentro de raiz

Cálculo: limite com raiz dentro de raiz

Mensagempor roberto_trebor » Sáb Fev 15, 2014 20:45

20140215_204122.jpg
Boa noite,

estava fazendo um exercício de calculo e fiquei com muita dúvida sobre um exercício, no qual, apresentava uma raiz cúbica dentro de uma quadrada.

\lim_{x\to +\8} \sqrt{2 + \sqrt{x + \sqrt{x}}} - \2/x-8

vou enviar uma foto para ficar mais fácil a compreensão
roberto_trebor
Novo Usuário
Novo Usuário
 
Mensagens: 1
Registrado em: Sáb Fev 15, 2014 20:31
Formação Escolar: GRADUAÇÃO
Área/Curso: engenharia química
Andamento: cursando

Re: Cálculo: limite com raiz dentro de raiz

Mensagempor Man Utd » Dom Fev 16, 2014 17:58

\lim_{ x \to 8 } \; \frac{ \sqrt{2+\sqrt[3] {x}}-2}{x-8}

u=\sqrt[3] x  \; \Leftrightarrow \; u^{3}=x  \;\;\;\;\;\; x \to 8 \; , \; u \to 2 :


\lim_{ u \to 2} \; \frac{\sqrt{2+u}-2}{u^{3}-8}


\lim_{ u \to 2} \; \frac{(\sqrt{2+u}-2)*(\sqrt{2+u}+2)}{(u^{3}-8{)*(\sqrt2+u}+2)}


\lim_{ u \to 2} \; \frac{2+u-4}{(u^{3}-8)*(\sqrt{2+u}+2)}


\lim_{ u \to 2} \; \frac{u-2}{(u^{3}-8)*(\sqrt{2+u}+2)}


\lim_{ u \to 2} \; \frac{(u-2)}{(u-2)*(u^2+2u+4)*(\sqrt{2+u}+2)}


\lim_{ u \to 2} \; \frac{1}{(u^2+2u+4)*(\sqrt{2+u}+2)}


só calcular para obter a resposta :D , se tiver dúvida só falar.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.