por marysuniga » Ter Jan 28, 2014 09:41
Bom Dia,
Tentei de todas as formas resolver esta integral mas não chego ao resultado.
![\int_{}^{}\frac{{x}^{2}dx}{\sqrt[2]{1-{x}^{2}}} \int_{}^{}\frac{{x}^{2}dx}{\sqrt[2]{1-{x}^{2}}}](/latexrender/pictures/7c230366f6e155c1f5291e4e71679f1c.png)
Estou tentando por substituição de variável a resposta que eu chegei foi lnx + x
Só que a resposta é esta:
![\frac{1}{2}arcsenx - \frac{1}{2}x\sqrt[2]{1-{x}^{2}} \frac{1}{2}arcsenx - \frac{1}{2}x\sqrt[2]{1-{x}^{2}}](/latexrender/pictures/2f25cb6eda270f6ce298df41e497cadf.png)
O exercício fala para substituir x por sent
Obrigada
-
marysuniga
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Dez 19, 2013 15:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Biomédica
- Andamento: cursando
por Man Utd » Ter Jan 28, 2014 11:50
O exercício pretende que você use o metodo da substituição trigonométrica:

então ficamos com:

da trigonometria sabemos que :

, segue:

para integrar use a identidade trigonometrica :

Avance e se tiver dúvidas pode perguntar.

-
Man Utd
- Colaborador Voluntário

-
- Mensagens: 155
- Registrado em: Qua Abr 03, 2013 09:20
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia da Computação
- Andamento: cursando
por marysuniga » Ter Jan 28, 2014 16:41
Cheguei em:


Mas ainda não bate o resultado, não sei como mexer nesse sen(2arcsenx)
:'(
-
marysuniga
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Dez 19, 2013 15:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Biomédica
- Andamento: cursando
por marysuniga » Ter Jan 28, 2014 21:19
Obrigado pela paciência!!
Consegui

-
marysuniga
- Novo Usuário

-
- Mensagens: 7
- Registrado em: Qui Dez 19, 2013 15:48
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Biomédica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Integral] Estou com dificuldade para resolver esta integral
por Paulo Perez » Qui Out 03, 2013 12:22
- 2 Respostas
- 4134 Exibições
- Última mensagem por Paulo Perez

Sex Out 04, 2013 16:32
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL] Integral por partes! Alguem pode me ajudar?
por mih123 » Qua Jan 16, 2013 20:18
- 3 Respostas
- 4428 Exibições
- Última mensagem por adauto martins

Qua Out 22, 2014 09:11
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Resolver Integral definida com trigonometria
por rodrigoboreli » Dom Set 07, 2014 01:02
- 1 Respostas
- 4214 Exibições
- Última mensagem por adauto martins

Sex Out 17, 2014 12:39
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Qua Ago 17, 2011 22:33
- 2 Respostas
- 2704 Exibições
- Última mensagem por ewald

Qui Ago 18, 2011 00:54
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] Integral funçao trigonometrica
por ewald » Sáb Ago 20, 2011 17:20
- 2 Respostas
- 2722 Exibições
- Última mensagem por LuizAquino

Dom Ago 21, 2011 21:14
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante
Assunto:
(FGV) ... função novamente rs
Autor:
my2009 - Qua Dez 08, 2010 21:48
Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
Assunto:
(FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25
Uma função de 1º grau é dada por

.
Temos que para

,

e para

,

.

Ache o valor de

e

, monte a função e substitua

por

.
Assunto:
(FGV) ... função novamente rs
Autor:
Pinho - Qui Dez 16, 2010 13:57
my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :
f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20
Assunto:
(FGV) ... função novamente rs
Autor:
dagoth - Sex Dez 17, 2010 11:55
isso ai foi uma questao da FGV?
haahua to precisando trocar de faculdade.
Assunto:
(FGV) ... função novamente rs
Autor:
Thiago 86 - Qua Mar 06, 2013 23:11
Saudações!
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b
Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.