• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor marysuniga » Ter Jan 28, 2014 09:41

Bom Dia,

Tentei de todas as formas resolver esta integral mas não chego ao resultado.
\int_{}^{}\frac{{x}^{2}dx}{\sqrt[2]{1-{x}^{2}}}
Estou tentando por substituição de variável a resposta que eu chegei foi lnx + x
Só que a resposta é esta: \frac{1}{2}arcsenx - \frac{1}{2}x\sqrt[2]{1-{x}^{2}}
O exercício fala para substituir x por sent

Obrigada
marysuniga
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Dez 19, 2013 15:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando

Re: [Integral]

Mensagempor Man Utd » Ter Jan 28, 2014 11:50

O exercício pretende que você use o metodo da substituição trigonométrica:

x=sent \;\; \rightarrow \;\; dx=cost \; dt

então ficamos com:


\int \; \frac{sen^{2}t* cost}{\sqrt{1-sen^{2}t}} \; dt


da trigonometria sabemos que : cost=\sqrt{1-sen^{2}t} , segue:


\int \; sen^{2} t \; dt



para integrar use a identidade trigonometrica : cos 2t=cos^{2}t-sen^{2}t \;\; \rightarrow \;\; cos2t=1-2sen^{2}t  \;\; \rightarrow \;\;  sen^{2}t=\frac{1-cos2t}{2}



Avance e se tiver dúvidas pode perguntar. :-D
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral]

Mensagempor marysuniga » Ter Jan 28, 2014 16:41

Cheguei em:
\frac{1}{2}arcsenx - \frac{1}{4}sen2t =
= \frac{1}{2}arcsenx - \frac{1}{4}sen(2arcsenx)
Mas ainda não bate o resultado, não sei como mexer nesse sen(2arcsenx)
:'(
marysuniga
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Dez 19, 2013 15:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando

Re: [Integral]

Mensagempor Man Utd » Ter Jan 28, 2014 19:21

Lembre-se da propriedade : sen(2t)=2*sent*cost:


\frac{1}{2}*arc \; senx +\frac{2*x*\sqrt{1-cos^{2}x}}{4}


\frac{1}{2}*arc \; senx +\frac{x*\sqrt{1-cos^{2}x}}{2}
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando

Re: [Integral]

Mensagempor marysuniga » Ter Jan 28, 2014 21:19

Obrigado pela paciência!!
Consegui
:-D
marysuniga
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Qui Dez 19, 2013 15:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Biomédica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: