• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral imprópia

Integral imprópia

Mensagempor jccp » Sex Jan 17, 2014 15:18

''Prove que a integral\int_{0}^{\infty}Sen x/x dx é condicionalmente convergente.''
Tentei integrar de 0 a 1 e de 1 até infinito, mas começou a complicar e não entendi. Dá uma força aí, valeu.
jccp
Novo Usuário
Novo Usuário
 
Mensagens: 5
Registrado em: Dom Out 06, 2013 14:37
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatua quimica
Andamento: cursando

Re: Integral imprópia

Mensagempor Man Utd » Sex Jan 17, 2014 20:26

jccp escreveu:''Prove que a integral\int_{0}^{\infty}Sen x/x dx é condicionalmente convergente.''
Tentei integrar de 0 a 1 e de 1 até infinito, mas começou a complicar e não entendi. Dá uma força aí, valeu.



eu entendi o que quis fazer, eu tbm tentei utilizar o critério da comparação em vão.Esta integral encontra-se na matéria de integrais impróprias msm?


Minha resolução:


Sabemos da teoria de transformada de laplace : \int_{0}^{+\infty} \; e^{-xy} \; 1 \; dy=\frac{1}{x}, então a nossa integral ficará:

\int_{0}^{+\infty} \; \int_{0}^{+\infty} \; e^{-xy} senx \; dydx


trocando a ordem de integração:

\int_{0}^{+\infty} \; \int_{0}^{+\infty} \; e^{-xy} senx \; dxdy


\int_{0}^{+\infty} \; \mathcal{L} \left\{ senx \right \} \; dy



Lembrando que \mathcal{L} \left\{ senx \right \} é uma notação para : \int_{0}^{+\infty} \; e^{-yx} senx \; dx.


\int_{0}^{+\infty} \; \frac{1}{y^2+1} \; dy

resolva para obter a resposta e concluir que é realmente convergente.
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 10:38

Olá ! Tenho essa dúvida e não consigo montar o problema para resolução:

Qual é o racional não nulo cujo o quadrado é igual à sua terça parte ?

Grata.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 12:27

x^2 = \frac{x}{3}


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 12:55

também pensei que fosse assim, mas a resposta é \frac{1}{3}.

Obrigada Fantini.


Assunto: Conjunto dos números racionais.
Autor: MarceloFantini - Sex Fev 18, 2011 13:01

x^2 = \frac{x}{3} \Rightarrow x^2 - \frac{x}{3} = 0 \Rightarrow x \left(x - \frac{1}{3} \right) = 0

Como x \neq 0:

x - \frac{1}{3} = 0 \Rightarrow x = \frac{1}{3}

O que você fez?


Assunto: Conjunto dos números racionais.
Autor: scggomes - Sex Fev 18, 2011 16:17

eu só consegui fazer a igualdade, não consegui desenvolver o restante, não pensei em fatoração, mas agora entendi o que vc fez.

Obrigada.