• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Problema de Máximo] Dúvida

[Problema de Máximo] Dúvida

Mensagempor silviopuc » Seg Dez 23, 2013 20:09

Pessoal estou com dúvida no seguinte exercício:

Da folha circular corta-se setor circular de modo que se obtenha o funil conforme mostra a figura abaixo. Se o funil tem volume máximo, então o ângulo central \alpha, em radianos, é igual a:

fig1.jpg
figura
fig1.jpg (9.44 KiB) Exibido 1413 vezes


A resposta é: 2\pi\sqrt[]{\frac{2}{3}}

Eu cheguei na seguinte expressão para o volume do cone: V=\frac{\pi{R}^{3}}{3}\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}\sqrt[]{1-\left(\frac{2\pi-\alpha}{2\pi} \right)^{2}}

Chamei y=\frac{2\pi-\alpha}{2\pi} \right), e reescrevi assim: y=\frac{\pi{R}^{3}}{3}{y}^{2}\sqrt[]{1-{y}^{2}}, com 0\leq y\leq1

Derivando obtive o ponto de máximo y=\sqrt[]{\frac{2}{3}}

Pois bem, já fiz um monte de cálculos e não chego no gabarito. Para chegar na fórmula do volume eu fiz assim:

\frac{2\pi R}{2\pi r}=\frac{2\pi}{2\pi-\alpha}\Rightarrow r=R\left(\frac{2\pi-\alpha}{2\pi} \right) e o H eu tirei por Pitágoras.

Não sei se fiz certo, pois considerei o meu cone obtido a partir da parte branca (já que subtraio \alpha) se é aqui que está meu erro, como consertá-lo e encontrar a resposta do gabarito?
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando

Re: [Problema de Máximo] Dúvida

Mensagempor young_jedi » Seg Dez 23, 2013 21:37

é exatamente ai que esta o seu erro
a parte que voce tem que considerar como o cone é a cinza

a forma de corrigir é simples

\frac{2\pi R}{2\pi r}=\frac{2\pi}{\alpha}

r=\frac{ \alpha R}{2\pi }
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Problema de Máximo] Dúvida

Mensagempor silviopuc » Seg Dez 23, 2013 22:33

Obrigado!

Devo ter esgotado os neurônios para chegar onde cheguei e fiquei sem eles para concluir. Fiz a alteração sugerida e deu certo.
silviopuc
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Ter Jan 15, 2013 12:41
Formação Escolar: ENSINO MÉDIO
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)