• Anúncio Global
    Respostas
    Exibições
    Última mensagem

integral simples

integral simples

Mensagempor vanu » Qui Dez 12, 2013 21:13

Como faço integral de 9/x²+3 usando a formula arc tang x ??
vanu
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Dez 11, 2013 14:44
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Matematica
Andamento: cursando

Re: integral simples

Mensagempor Man Utd » Sex Dez 13, 2013 11:31

\int \frac{9}{x^2+3} dx


\int \frac{9}{3*(\frac{x^2}{3}+1)} dx


\int \frac{3}{\frac{x^2}{3}+1} dx


3*\int \frac{1}{\frac{x^2}{3}+1} dx


3*\int \frac{1}{(\frac{x}{\sqrt 3})^2+1} dx


utilize a substituição u=\frac{x}{\sqrt 3} \;\; \rightarrow \;\; du=\frac{1}{\sqrt 3}

então:

3\sqrt 3* \int \frac{1}{u^2+1} du


como sabemos que \int \frac{1}{x^2+1}=arc \;tg x :

3\sqrt 3* arc \; tg (u)+C

3*\sqrt 3 *arc \; tg(\frac{x}{\sqrt 3})+C
Man Utd
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 155
Registrado em: Qua Abr 03, 2013 09:20
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.