• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integral por partes - dúvida

Integral por partes - dúvida

Mensagempor Danilo » Dom Nov 24, 2013 18:20

Resolver \int_{}^{}{x}^{3}{e}^{-{x}^{2}}dx

eu fiz até

\int_{}^{}{x}^{3}{e}^{-{x}^{2}}dx

u = {x}^{3},

 v = \int_{e}^{-{x}^{2}}dx \Rightarrow v = ?

eu não sei como encontrar v. Tentei fazer por substituição pois tem uma função composta. Chamei u = -{x}^{2} mas eu não consegui fazer a substituição. Eu gostaria de resolver apenas dessa maneira, se eu puder... pois não adianta eu resolver de outro jeito se eu travei nessa última integral. Alguma luz? Grato desde já :)
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor e8group » Dom Nov 24, 2013 20:10

Tome u= -x^2 ,derivando-se : -du/2 = xdx .

A nova integral fica

-1/2  \int u \cdot e^{u}  du .

Agora tente por partes .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor Danilo » Dom Nov 24, 2013 22:04

santhiago escreveu:Tome u= -x^2 ,derivando-se : -du/2 = xdx .

A nova integral fica

-1/2  \int u \cdot e^{u}  du .

Agora tente por partes .


Santhiago, com a sua substuição deu certinho mas eu não consegui visualizar como vc substituiu! -\frac{du}{2} = xdx e não dx (corrreto?). Por isso eu não consigo substituir (se eu não estiver errado) aí eu travo!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Integral por partes - dúvida

Mensagempor e8group » Seg Nov 25, 2013 11:24

OK . Primeiro pense : Qual a relação entre -x^2 e x^3 ? Para responder esta pergunta , basta notar que x^3 = (-1)(-1)x \cdot x^2 = [(-1)x] (-x^2) .

Além disso, se u = -x^2 entãodu = [-x^2]' dx = (-2)x dx e assim \frac{du}{2} = (-1)x dx . Agora note que ,

x^3 e^{-x^2} dx = [(-1)x] (-x^2) e^{(-x^2)} dx = (-x^2) \cdot e^{(-x^2)} [(-1)xdx] .

A expressão entre () pode ser substituída por u ,já a expressão entre [] pode ser substituída por \frac{du}{2} . Deste modo ,

\int x^3 e^{-x^2} dx  =  \int u \cdot e^{u} \frac{du}{2} = \frac{1}{2} \int u e^u du .

Peço desculpa ,no primeiro post errei contas . De qualquer forma espero que ajude .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 9 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59