por Taka » Sáb Nov 02, 2013 21:39
Está vazando água de um tanque cônico invertido a uma taxa de 10000 cm/min. Ao mesmo tempo, água está sendo bombeada para dentro do tanque a uma taxa constante. O tanque tem 6m de altura e o diâmetro do topo é de 4m. Se o nível da água estiver subindo a uma taxa de 20cm/min quando a altura da água for 2m, encontre a taxa segundo a qual a água está sendo bombeada dentro do tanque.
Alguem da uma luz, pois sei como resolver se não tivesse tanto cano tirando e colocando água =D
-
Taka
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Nov 02, 2013 16:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Química
- Andamento: cursando
por e8group » Dom Nov 03, 2013 00:05
Posso estar errado . Mas , acredito que o volume

de água no tanque , é a soma do volume inicial

com o volume que entra tanque ,

, menos o volume que sai do tanque

. Isto é ,

.
Em um tanque cônico de diâmetro

e altura

, teremos que o volume de água no tanque

ou de forma equivalente ,

em que

é a altura da água avaliada no instante

.Esta última expressão foi obtida por semelhança de triângulos retângulos que fornece

.
Substituindo

em

e derivando com relação a

, segue

.
Daí ,

é taxa segundo a qual a água estar sendo bombeada p/ dentro do tanque .
Basta substituir os valores dados e fazer conta .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
por Taka » Dom Nov 03, 2013 08:09
Muito obrigado, agora sim eu consigo
-
Taka
- Usuário Ativo

-
- Mensagens: 15
- Registrado em: Sáb Nov 02, 2013 16:33
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Eng. Química
- Andamento: cursando
por e8group » Dom Nov 03, 2013 12:09
De nada .Agora que notei o erro , calculei o volume como o tanque considerando o cilíndrico sendo na verdade o mesmo cônico ,então seu volume será

da expressão

.
Se puder refazer as contas e verificar se a resposta está de acordo com o gabarito .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- [Taxas Relacionadas]
por Ana_Rodrigues » Seg Nov 14, 2011 10:02
- 2 Respostas
- 4493 Exibições
- Última mensagem por LuizAquino

Seg Nov 14, 2011 12:19
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:48
- 0 Respostas
- 1403 Exibições
- Última mensagem por RonnieAlmeida

Qui Mai 22, 2014 16:48
Cálculo: Limites, Derivadas e Integrais
-
- Taxas Relacionadas
por RonnieAlmeida » Qui Mai 22, 2014 16:58
- 1 Respostas
- 2637 Exibições
- Última mensagem por alienante

Dom Jun 15, 2014 07:59
Cálculo: Limites, Derivadas e Integrais
-
- Taxas relacionadas
por Lorijuca » Qui Mai 29, 2014 22:23
- 0 Respostas
- 2889 Exibições
- Última mensagem por Lorijuca

Qui Mai 29, 2014 22:23
Cálculo: Limites, Derivadas e Integrais
-
- TAXAS RELACIONADAS
por Daniela[ » Sáb Jul 05, 2014 15:15
- 3 Respostas
- 6858 Exibições
- Última mensagem por young_jedi

Dom Jul 06, 2014 14:25
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Thassya - Sáb Out 01, 2011 16:20
1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?
2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?
3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?
Assunto:
[Função] do primeiro grau e quadratica
Autor:
Neperiano - Sáb Out 01, 2011 19:46
Ola
Qual as suas dúvidas?
O que você não está conseguindo fazer?
Nos mostre para podermos ajudar
Atenciosamente
Assunto:
[Função] do primeiro grau e quadratica
Autor:
joaofonseca - Sáb Out 01, 2011 20:15
1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.
Em

substitui-se
m, substitui-se
y e
x por um dos pares ordenados, e resolve-se em ordem a
b.
2)Na equação

não existem zeros.Senão vejamos
Completando o quadrado,
As coordenadas do vertice da parabola são
O eixo de simetria é a reta

.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.
f(-7)=93
f(10)=59
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.