• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral] Integrais Impróprias

[Integral] Integrais Impróprias

Mensagempor dehcalegari » Qua Out 02, 2013 18:43

Calcule

\int_{e}^{+\infty}\frac{1dx}{x{ln}^{3}x}

Tentei fazer por

\lim_{+\infty}\int_{e}^{b}\frac{1dx}{x{ln}^{3}x}

Mais ai cai numa integral por partes muito grande, que até desanimei...
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral] Integrais Impróprias

Mensagempor young_jedi » Qua Out 02, 2013 21:56

por substituição

u=\ln(x)

du=\frac{1}{x}dx

\int_{e}^{\infty}\frac{1}{x.(\ln(x))^3}dx

=\int\frac{1}{u^3}du

=-\frac{1}{2}.\frac{1}{u^2}

=-\frac{1}{2}.\frac{1}{(\ln(x))^2}\Big|_{e}^{\infty}

=0-\left(\frac{-1}{2}\right)=\frac{1}{2}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral] Integrais Impróprias

Mensagempor Bravim » Qui Out 03, 2013 11:45

Bem, apesar de já demonstrado o resultado. Só para mostrar que por partes não fica algo monstruoso.

\int \frac{1}{x*ln^3x}dx=\frac{lnx}{ln^3x}-\int \frac{(-3)*lnx}{x*ln^4x}dx

\int \frac{1}{x*ln^3x}dx=\frac{-1}{2*ln^2x}

:)
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando

Re: [Integral] Integrais Impróprias

Mensagempor dehcalegari » Seg Out 21, 2013 16:36

Tks. :)
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: