• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Calcular o Limite

Calcular o Limite

Mensagempor Gabs » Sáb Out 05, 2013 15:35

Olá, estou tentando fazer esta questão há algumas horas, mas sempre chego no resultado errado. Tenho que calcular o limite:
\lim_{x->0}\frac{1-\sqrt[3]{1-x}}{1+\sqrt[3]{3x-1}}
Gabs
Novo Usuário
Novo Usuário
 
Mensagens: 2
Registrado em: Qua Out 02, 2013 18:23
Formação Escolar: GRADUAÇÃO
Área/Curso: Ciência da Computação
Andamento: cursando

Re: Calcular o Limite

Mensagempor Bravim » Sáb Out 05, 2013 22:01

Bem, para se fazer esse limite você terá de racionalizar o denominador e usar L'Hopital.
Racionalizando a expressão, ficaremos com:
f(x)=\frac{1}{3x}*(1-{(1-x)}^{\frac{1}{3}}-{(-1+3 x)}^{\frac{1}{3}}+{(1-x)}^{(\frac{1}{3})}*{(-1+3 x)}^{(\frac{1}{3})}+{(-1+3 x)}^{\frac{2}{3}}-{(1-x)}^{(\frac{1}{3})}*{(-1+3 x)}^{\frac{2}{3}})
Agora,aplicando L'Hopital,
g(x)=\frac{1}{3}*(\frac{1-{(-1+3 x)}^{\frac{1}{3}}+{(-1+3 x)}^{\frac{2}{3}}}{3 {(1-x)}^{\frac{2}{3}}}+(1-{(1-x)}^{\frac{1}{3}})* [-{(-1+3 x)}^{-2/3}+\frac{2}{{(-1+3 x)}^{\frac{1}{3}}}])
Como o termo é contínuo em zero e a função tende a zero quando o limite de x tende a zero
\lim_{x\rightarrow 0}g(x)\Rightarrow\lim_{x\rightarrow 0}f(x)=0
Como a fórmula fica difícil de escrever mesmo em LaTeX devido ao tamanho dela, recomendo a visualização por aqui
http://www.wolframalpha.com/input/?i=%28%281-%281-x%29%5E%281%2F3%29%29+%281-%28-1%2B3+x%29%5E%281%2F3%29%2B%28-1%2B3+x%29%5E%282%2F3%29%29%29%2F%283+x%29&lk=1&a=ClashPrefs_*Math-(daqui também é fácil de verificar que realmente é zero pelo gráfico)
e por aqui
http://www.wolframalpha.com/input/?i=derivate%28%281-%281-x%29%5E%281%2F3%29%29+%281-%28-1%2B3+x%29%5E%281%2F3%29%2B%28-1%2B3+x%29%5E%282%2F3%29%29%29%2F3+
Favor conferir. Como a expressão é muito grande eu posso ter errado alguma coisa :)
Imagem
Avatar do usuário
Bravim
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 57
Registrado em: Qui Out 03, 2013 03:28
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 10 visitantes

 



Assunto: simplifiquei e achei...está certo?????????????
Autor: zig - Sex Set 23, 2011 13:57

{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Assunto: simplifiquei e achei...está certo?????????????
Autor: Vennom - Sex Set 23, 2011 21:41

zig escreveu:{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}


Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo: {\frac{1}{4}}^{-1} = \frac{4}{1}

Então pense o seguinte: a fração geratriz de 0,05 é \frac{1}{20} , ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja: {0,05}^{-\frac{1}{2}} = {\frac{1}{20}}^{-\frac{1}{2}} = {\frac{20}{1}}^{\frac{1}{2}} = \sqrt[2]{20}

A raiz quadrada de vinte, você acha fácil, né?

Espero ter ajudado.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:23

Nós podemos simplificar, um pouco, sqrt(20) da seguinte forma:

sqrt(20) = sqrt(4 . 5) = sqrt( 2^2 . 5 ) = 2 sqrt(5).

É isso.


Assunto: simplifiquei e achei...está certo?????????????
Autor: fraol - Dom Dez 11, 2011 20:24

Nós podemos simplificar, um pouco, \sqrt(20) da seguinte forma:

\sqrt(20) = \sqrt(4 . 5) = \sqrt( 2^2 . 5 ) = 2 \sqrt(5).

É isso.