• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]

[Integral]

Mensagempor dehcalegari » Seg Set 30, 2013 18:57

Calcule

\int_{}^{}\frac{{x}^{3}+3{x}^{2}+x+9dx}{({x}^{2}+1)({x}^{2}+3)}

Resumindo, fiz

A+C=1
B+D=3
3A+C = 1
3B+D=-9

A=0
B=-6
C=1
D=9

Substituindo, eu tenho que calcular

-6\int_{}^{}\frac{dx}{{x}^{2}+1} + \int_{}^{}\frac{xdx}{{x}^{2}+3} + 9\int_{}^{}\frac{dx}{{x}^{2}+3}

E pra falar a verdade empaquei na hora de resolver a ultima parte dessa integral... Pq fico perdido no x que sobra ao fazer a substituição.
dehcalegari
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 85
Registrado em: Qui Abr 04, 2013 09:15
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecânica
Andamento: cursando

Re: [Integral]

Mensagempor Russman » Seg Set 30, 2013 21:03

Se você tomar u(x) = x^2 + a^2, então du(x) = 2x dx e , então,

\frac{xdx}{x^2+a^2} = \frac{1}{2} \frac{dx}{u(x)}

e essa você conhece a integral, não?
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.