• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limite] Limites notáveis resolução de questão

[Limite] Limites notáveis resolução de questão

Mensagempor Nicolas1Lane » Qui Set 26, 2013 07:56

Dada a seguinte proposição $\lim_{x\rightarrow\ 0} \frac{tgax}{x}$ queria saber se minha resolução apresentada abaixo matematicamente descrita é aceitável ou ainda se poderia ser melhorada ou mesmo no caso da existência, me digam dicas para melhorar ainda mais neste aprendizado...
Estou sendo meio redundante, mas isso se deve a enfatização de minha professora de querer que todas as propriedades e etapas de resoluções usadas nos cálculos sejam explicitadas até que se chegue ao produto final.

Assim: $\lim_{x\rightarrow\ 0} \frac{tgax}{x}$

=$\lim_{x\rightarrow\ 0} \frac{seax}{ \frac{cosax}{x}}$

=$\lim_{x\rightarrow\ 0} \frac{1 . ax}{cosax . ax} . \lim_{x\rightarrow\ 0} \frac{\frac{sem ax . ax}{ax}}{{x}}$

=$1 . a \lim_{x\rightarrow\ 0} \frac{senx}{x}$

=$a . 1$
=$ a $
Nicolas1Lane
Usuário Ativo
Usuário Ativo
 
Mensagens: 12
Registrado em: Qua Set 11, 2013 23:25
Formação Escolar: ENSINO FUNDAMENTAL I
Área/Curso: Exatas/Ciência da Computação
Andamento: cursando

Re: [Limite] Limites notáveis resolução de questão

Mensagempor young_jedi » Qui Set 26, 2013 14:08

podemos escrever da seguinte forma

\lim_{x\to0}\frac{tg(ax)}{x}

\lim_{x\to0}\frac{sen(ax)}{cos(ax)}\frac{1}{x}

\lim_{x\to0}\frac{sen(ax)}{cos(ax)}\frac{a}{ax}

\lim_{x\to0}\frac{sen(ax)}{ax}.\frac{a}{cos(ax)}

\lim_{x\to0}\frac{sen(ax)}{ax}.\lim_{x\to0}\frac{a}{cos(ax)}=1.a
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.