• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Dúvida - limite

Dúvida - limite

Mensagempor Danilo » Sáb Set 14, 2013 13:07

Calcule

\lim_{\rightarrow0}\frac{{e}^{\frac{1}{x}}+ {e}^{-\frac{1}{x}}}{{e}^{\frac{1}{x}}-{e}^{\frac{1}{x}}}

bom, eu coloquei {e}^{\frac{1}{x}} em envidência no numerador e no denominador mas ainda sim nao deu. Grato desde já!!!!
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando

Re: Dúvida - limite

Mensagempor temujin » Sáb Set 14, 2013 13:51

Rapaz, este é muito bom, hein?

Não sei se está certo...pensei em fazer assim:

Primeiro reescrevemos o limite como:

\lim_{x \to 0} \frac{e^{1/x}+\frac{1}{e^{1/x}}}{e^{1/x}-e^{1/x}}=\lim_{x \to 0} \frac{\frac{e^{2/x}+1}{e^{1/x}}}{e^{1/x}-e^{1/x}}

Agora, multiplicando numerador e denominador por e^{1/x}:

\lim_{x \to 0} \frac{\frac{e^{1/x}(e^{2/x}+1)}{e^{1/x}}}{e^{1/x}(e^{1/x}-e^{1/x})} = \lim_{x\to 0} \frac{e^{2/x}+1}{e^{2/x}(1-1)} = \lim_{x \to 0} \frac{\cancel{e^{2/x}}(1+\frac{1}{e^{2/x}})}{\cancel{e^{2/x}}(1-1)}

\lim_{x \to 0} \frac{1+\frac{1}{e^{2/x}}}{0}=\frac{1}{0} = \infty

Será que é por aí??

:?:
temujin
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 69
Registrado em: Qui Mar 14, 2013 15:11
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: formado

Re: Dúvida - limite

Mensagempor Danilo » Sáb Set 14, 2013 14:03

Cara, é isso mesmo. Obrigado! :y:
Danilo
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 224
Registrado em: Qui Mar 15, 2012 23:36
Formação Escolar: GRADUAÇÃO
Área/Curso: Matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 5 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?