• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Substituição por integral

Substituição por integral

Mensagempor livia02 » Sáb Ago 17, 2013 19:29

Estava acompanhando uma explicação no livro da resolução de uma equação diferencial e não entendi um passo da resolução:

c.v(t) + \frac{dv(t)}{dt}= f (lembrando que c e f são números)

1º - Fazendo s(t) = {e}^{\int c dt} = {e}^{ct} e multiplicando os dois lados da equação temos:
c{e}^{ct}.v(t)+c{e}^{ct}.\frac{dv(t)}{dt}=f{e}^{ct}

2º - Depois ele substitui c{e}^{ct} = \frac{d}{dt}({e}^{ct}).

Não entendi esses dois passos. Da onde ele tirou s(t) = {e}^{\int c dt} = {e}^{ct}? Como ele chegou a esse valor para substituir? E no segundo passos, porque ele substituiu pela derivada?

Alguém pode me explicar o porque desses passos?
Obrigada!
livia02
Novo Usuário
Novo Usuário
 
Mensagens: 6
Registrado em: Qua Ago 14, 2013 20:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia mecânica
Andamento: cursando

Re: Substituição por integral

Mensagempor MateusL » Sáb Ago 17, 2013 23:36

Acho que ele fez tudo isso para poder escrever o lado esquerdo da equação como a derivada de um produto de funções.
Então, ele criou uma função s(t)=e^{\int cdt}=e^{ct} para que \dfrac{d s(t)}{dt}=c\cdot s(t).

Então, multiplicando os dois lados por s(t)=e^{ct}:

c\cdot v(t)+\dfrac{dv(t)}{dt}=f
c\cdot s(t)\cdot v(t)+s(t)\cdot \dfrac{dv(t)}{dt}=f\cdot s(t)

Como \dfrac{d s(t)}{dt}=c\cdot s(t), podemos escrever que:

v(t)\cdot \dfrac{ds(t)}{dt}+s(t)\cdot \dfrac{dv(t)}{dt}=f\cdot s(t)

Pela derivada do produto, v(t)\cdot \dfrac{ds(t)}{dt}+s(t)\cdot \dfrac{dv(t)}{dt}=\dfrac{d(v(t)\cdot s(t))}{dt}, então:

\dfrac{d(v(t)\cdot s(t))}{dt}=f\cdot s(t)

Espero que seja isso.
Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.