• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Derivada implitita

Derivada implitita

Mensagempor Diego Silva » Dom Jul 28, 2013 13:12

Pessoal gostaria de ajuda para encontrar a segunda derivada de cos y = x e 3x² + 4y² = 4:

A primeira consigo encontrar mas a segunda não consigo, se alguém puder ajudar.
Diego Silva
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jun 11, 2013 18:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Química
Andamento: cursando

Re: Derivada implitita

Mensagempor MateusL » Dom Jul 28, 2013 16:41

A segunda ficará:
\dfrac{d(3x^2+4y^2)}{dx}=0

3\cdot\dfrac{dx^2}{dx}+4\cdot\dfrac{dy^2}{dx}=0

6x+8y\dfrac{dy}{dx}=0

\dfrac{dy}{dx}=-\dfrac{3x}{4y}

\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(-\dfrac{3x}{4y}\right)=-\dfrac{3}{4}\left(x\dfrac{d}{dx}\left(\dfrac{1}{y}\right)+\dfrac{1}{y}\cdot \dfrac{dx}{dx}\right)=-\dfrac{3}{4}\left(x\cdot\dfrac{-\frac{dy}{dx}}{y^2}+\dfrac{1}{y}\right)

\dfrac{d^2y}{dx^2}=\dfrac{3}{4}\left(\dfrac{x}{y^2}\cdot \dfrac{dy}{dx}-\dfrac{1}{y}\right)=\dfrac{3}{4}\left(\dfrac{x}{y^2}\cdot\dfrac{-3x}{4y}-\dfrac{1}{y}\right)

\dfrac{d^2y}{dx^2}=-\dfrac{3}{4}\left(\dfrac{3x^2}{4y^3}+\dfrac{1}{y}\right)=-\dfrac{3}{4}\left(\dfrac{3x^2+4y^2}{4y^3}\right)=-\dfrac{3}{4}\left(\dfrac{4}{4y^3}\right)

\dfrac{d^2y}{dx^2}=-\dfrac{3}{4y^3}

Acredito que seja isso.

Abraço!
MateusL
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 68
Registrado em: Qua Jul 17, 2013 23:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Derivada implitita

Mensagempor Diego Silva » Seg Jul 29, 2013 20:54

MateusL escreveu:A segunda ficará:
\dfrac{d(3x^2+4y^2)}{dx}=0

3\cdot\dfrac{dx^2}{dx}+4\cdot\dfrac{dy^2}{dx}=0

6x+8y\dfrac{dy}{dx}=0

\dfrac{dy}{dx}=-\dfrac{3x}{4y}

\dfrac{d^2y}{dx^2}=\dfrac{d}{dx}\left(-\dfrac{3x}{4y}\right)=-\dfrac{3}{4}\left(x\dfrac{d}{dx}\left(\dfrac{1}{y}\right)+\dfrac{1}{y}\cdot \dfrac{dx}{dx}\right)=-\dfrac{3}{4}\left(x\cdot\dfrac{-\frac{dy}{dx}}{y^2}+\dfrac{1}{y}\right)

\dfrac{d^2y}{dx^2}=\dfrac{3}{4}\left(\dfrac{x}{y^2}\cdot \dfrac{dy}{dx}-\dfrac{1}{y}\right)=\dfrac{3}{4}\left(\dfrac{x}{y^2}\cdot\dfrac{-3x}{4y}-\dfrac{1}{y}\right)

\dfrac{d^2y}{dx^2}=-\dfrac{3}{4}\left(\dfrac{3x^2}{4y^3}+\dfrac{1}{y}\right)=-\dfrac{3}{4}\left(\dfrac{3x^2+4y^2}{4y^3}\right)=-\dfrac{3}{4}\left(\dfrac{4}{4y^3}\right)

\dfrac{d^2y}{dx^2}=-\dfrac{3}{4y^3}

Acredito que seja isso.

Abraço!


isso mesmo, obrigado!
Diego Silva
Usuário Ativo
Usuário Ativo
 
Mensagens: 11
Registrado em: Ter Jun 11, 2013 18:22
Formação Escolar: ENSINO MÉDIO
Área/Curso: Engenharia Química
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 6 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}