• Anúncio Global
    Respostas
    Exibições
    Última mensagem

CALCULO

CALCULO

Mensagempor Victor Gabriel » Qua Jul 17, 2013 12:17

Pessoal tem como alguém mim ajudar com esta questão.

Questão: Encontre a maior e a menor distância de um ponto situado sobre a elipse \frac{{x}^{2}}{4}+{y}^{2}=1 à reta x+y-4=0
Victor Gabriel
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 48
Registrado em: Dom Abr 14, 2013 20:29
Formação Escolar: ENSINO MÉDIO
Área/Curso: estudante
Andamento: cursando

Re: CALCULO

Mensagempor Russman » Qua Jul 17, 2013 19:27

A grandeza de interesse a ser minimizada ou maximizada é a distância entre as curvas. Assim, o primeiro passo é determiná-la em função dos parâmetros das mesmas.

A distância entre dois pontos (x_1,y_1) e (x_2,y_2) é dada por

d = \sqrt{\left (x_2 - x_1  \right )^2 + \left ( y_2 - y_1 \right )^2} .

Como um dos pontos deve pertencer a elipse e o outro a reta, então podemos relacionar as coordenadas, escolhendo, por exemplo, o subíndice 1 para a reta e 2 para a elipse, da seguinte forma

\left\{\begin{matrix}
x_2+y_2-4=0 \\ 
\frac{x^2_2}{4} + y_2^2 = 1
\end{matrix}\right. \Rightarrow \left\{\begin{matrix}
y_1 = 4- x_1 \\ 
y_2 = \sqrt{1 - \left ( \frac{x_2^2}{4} \right )}
\end{matrix}\right.

de modo que

d = \sqrt{\left (x_2 - x_1  \right )^2 + \left (  \sqrt{1 - \left ( \frac{x_2^2}{4} \right )} - 4+ x_1 \right )^2}

Agora não sei se o ponto sobre a elipse é um qualquer, um específico(não parece ser pelo enunciado) ou se é o par de pontos que minimizam ou maximizam a função distância não localmente mas globalmente. Se sim, então temos uma função de duas variáveis e as respectivas derivadas parciais de cada variável serão nulas nos pontos de máximo e mínimo.

Uma outra alternativa seria considerar que a distância entre as curvas deveria ser uma reta PERPENDICULAR a reta dada. Isto simplificaria bastante as coisas. Veja que, nesse caso, a distância entre um ponto (x,y) qualquer pertencente a elipse e a reta de equação ax+by+c=0 é dada por

d= \frac{1}{\sqrt{a^2+b^2}}\left | ax+by+c \right |

e dada reta, então

d= \frac{1}{\sqrt{2}}\left | x+y-4 \right | .

Como o ponto deve pertencer a elipse, temos a relação y = \sqrt{1 - \left ( \frac{x^2}{4} \right )} e, portanto,

d= \frac{1}{\sqrt{2}}\left | x+ \sqrt{1 - \left ( \frac{x^2}{4} \right )}-4 \right |.

Agora temos a distância entre as curvas em função da coordenada x que, como varia de -2 a 2 e ,nesse intervalo, o valor que está dentro do módulo é negativo podemos nos livrar dele colocando um sinal menos na frente da função.

d(x)= -\frac{1}{\sqrt{2}} \left (x+ \sqrt{1 - \left ( \frac{x^2}{4} \right )}-4  \right )

ou

d(x)= -\frac{1}{\sqrt{2}} \left (x+ \frac{1}{2}\sqrt{4 -x^2}-4  \right ).

Agora para extremá-la temos de calcular qual valor de x que zera a derivada primeira.
"Ad astra per aspera."
Russman
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1183
Registrado em: Sex Abr 20, 2012 22:06
Formação Escolar: PÓS-GRADUAÇÃO
Área/Curso: Física
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Exercicios de polinomios
Autor: shaft - Qua Jun 30, 2010 17:30

2x+5=\left(x+m\right)²-\left(x-n \right)²

Então, o exercicio pede para encontrar {m}^{3}-{n}^{3}.

Bom, tentei resolver a questão acima desenvolvendo as duas partes em ( )...Logo dps cheguei em um resultado q nao soube o q fazer mais.
Se vcs puderem ajudar !


Assunto: Exercicios de polinomios
Autor: Douglasm - Qua Jun 30, 2010 17:53

Bom, se desenvolvermos isso, encontramos:

2x+5 = 2x(m+n) + m^2-n^2

Para que os polinômios sejam iguais, seus respectivos coeficientes devem ser iguais (ax = bx ; ax² = bx², etc.):

2(m+n) = 2 \;\therefore\; m+n = 1

m^2-n^2 = 5 \;\therefore\; (m+n)(m-n) = 5 \;\therefore\; (m-n) = 5

Somando a primeira e a segunda equação:

2m = 6 \;\therefore\; m = 3 \;\mbox{consequentemente:}\; n=-2

Finalmente:

m^3 - n^3 = 27 + 8 = 35

Até a próxima.