• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Limites] limites no infinito

[Limites] limites no infinito

Mensagempor lucasdemirand » Qui Jul 11, 2013 15:10

olá pessoal, tenho uma duvida neste exercicio, estou multiplicando pelos dois conjugador, mas ainda assim nao estou conseguindo acertar ele, O gabarito que possuo dá ?3/3
\lim_{x\rightarrow \infty} = \frac{\sqrt[]{x³+2} +\sqrt[]{x^5}}{\sqrt[]{3x^5+1}+x}
lucasdemirand
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 31
Registrado em: Sáb Jul 06, 2013 12:04
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Mecanica
Andamento: cursando

Re: [Limites] limites no infinito

Mensagempor e8group » Qui Jul 11, 2013 15:38

Dica :

Note que ,

\sqrt{x^3+2} + \sqrt{x^5} = \sqrt{x^3[1+2/x^3]} + \sqrt{x^5} = \sqrt{x^3} \sqrt{1+2/x^3}  + \sqrt{x^5} = x^{3/2} (1+2/x^3)^{1/2} + x^{5/2} = x^{5/2} \left[x^{3/2} \frac{(1+2/x^3)^{1/2}}{x^{5/2}} +1\right] = x^{5/2} \left[ \frac{(1+2/x^3)^{1/2}}{x} +1\right]


e

também que

(3x^5+1)^{1/2} + x  =  x^{5/2} (3 + 1/x^5)^{1/2} + x  =   x^{5/2} \left[ (3 + 1/x^5)^{1/2} + 1/x^{3/2}\right]

Agora tente concluir .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Taxa de variação
Autor: felipe_ad - Ter Jun 29, 2010 19:44

Como resolvo uma questao desse tipo:

Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?

A letra (a) consegui resolver e cheguei no resultado correto de \frac{4\pi{r}^{2}}{3}
Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é 1,066\pi

Alguem me ajuda? Agradeço desde já.


Assunto: Taxa de variação
Autor: Elcioschin - Qua Jun 30, 2010 20:47

V = (1/3)*pi*r²*h ----> h = 4r/3

V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³

Derivando:

dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3

Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s


Assunto: Taxa de variação
Autor: Guill - Ter Fev 21, 2012 21:17

Temos que o volume é dado por:

V = \frac{4\pi}{3}r^2


Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:

\frac{dV}{dt} = \frac{8\pi.r}{3}.\frac{dr}{dt}


Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

\frac{dV}{dt} = \frac{8\pi.2}{3}.\frac{2}{10}

\frac{dV}{dt} = \frac{16\pi}{15}