• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral]sqrt(1+4x²)dx

[Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qua Jun 19, 2013 13:57

Olá pessoal,
Alguém poderia me dizer se esta integral que resolvi está certa ou errada?
\int_{0}^{1}\sqrt[2]{1+4{x}^{2}}dx
Bom, vou postar o passa a passo que fiz.
2x=tg\Theta
x=\frac{{sec}^{2}\Theta}{2}
\frac{1}{2}\int_{}^{}\sqrt[2]{1+{tg}^{2}\Theta}{sec}^{2}\Theta d\Theta
\frac{1}{2}\int_{}^{}sec\Theta {sec}^{2}\Theta d\Thetasec\Theta tg\Theta - \int_{}^{}{sec}^{3}\Theta d\Theta+\int_{}^{}sec\Theta d\Theta
2\int_{}^{}{sec}^{3}\Theta=sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right|
\int_{}^{}{sec}^{3}\Theta=\frac{1}{2}\left[sec\Theta tg\Theta+ln\left|sec\Theta+tg\Theta \right| \right]
tg\Theta=2x
sec\Theta=\sqrt[2]{1+4{x}^{2}}
Substituindo,
\frac{1}{4}\left[\sqrt[2]{1+4{x}^{2}}2x+ln\left|\sqrt[2]{1+4{x}^{2}}+2x \right| \right]
Depois substitui o x=1 e subtrai por x=0 chegando no resultado de 0,75U.C
Editado pela última vez por VenomForm em Qui Jun 20, 2013 11:54, em um total de 1 vez.
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando

Re: [Integral]sqrt(1+4x²)dx

Mensagempor VenomForm » Qui Jun 20, 2013 11:54

Dando 1 UP e corrigindo o resultado final
VenomForm
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Qua Fev 27, 2013 14:25
Formação Escolar: GRADUAÇÃO
Área/Curso: Bacharelado em Ciências da Computação
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 1 visitante

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59