• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Equações diferenciais] Fator integrante

[Equações diferenciais] Fator integrante

Mensagempor brunojorge29 » Qua Jun 19, 2013 10:52

Não estou conseguindo resolver esta equação, por favor me ajudem pois cairá uma parecida na minha prova.

Dada a equação diferencial. \left({e}^{x+y} + y{e}^{y} \right)dx + \left(x{e}^{y} - 1 \right)dy = 0, y\left(0 \right) = -1.
a) Encontre o fator integrante

b) Resolva o problema de valor inicial.
brunojorge29
Usuário Ativo
Usuário Ativo
 
Mensagens: 14
Registrado em: Sex Set 30, 2011 09:13
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [Equações diferenciais] Fator integrante

Mensagempor adauto martins » Ter Out 21, 2014 15:54

({e}^{x+y}+y{e}^{y})dx+(x{e}^{y}-1)dy=0,onde M(x,y)=({e}^{x+y}+y{e}^{y})e N(x,y)=x{e}^{y}-1...{M}_{y}={e}^{x+y}+{e}^{y}+y{e}^{y}... e {N}_{x}=x.{e}^{y}+{e}^{y}...logo {M}_{y}\neq{N}_{x}a equaçao nao e exata...logo vamos procurar uma funçao F=F(x) tal q. \partial(MF)/x=\partial(NF)/y...desenvolvendo a derivada parcial e arranjando F, teremos F(x)={e}^{\int_{}^{}R(x)}tal q. R(x)=({M}_{x}-{N}_{y})/N(y)...logo:
F(x)={e}^{\int_{}^{}({e}^{y}+y-x)/(x+1)dx}...p/y(0)=-1... F(x)={e}^{\int_{}^{}({e}^{-1}-1-x)/(x+1)dx},acha-se F=F(x),F e o fator integrante...depois multiplique o pela equaçao e resolva-a...
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando

Re: [Equações diferenciais] Fator integrante

Mensagempor adauto martins » Ter Out 21, 2014 18:50

esqueci...y(0)=-1,p/x=0,logo...F(x)={e}^{\int_{}^{}{e}^{-1}-1-0/(0+1)dx}={e}^{\int_{}^{}(({e}^{-1})-1)dx}={e}^{x({1-e/e})}
adauto martins
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1171
Registrado em: Sex Set 05, 2014 19:37
Formação Escolar: EJA
Área/Curso: matematica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}