• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Minimização de funções] Distância entre duas retas reversas

[Minimização de funções] Distância entre duas retas reversas

Mensagempor guisaulo » Sáb Jun 08, 2013 14:48

Considere as retas reversas r e s de equações
(x,y,z)=(0,0,2)+\lambda(1,2,0),\lambda\in R
e
(x,y,z)=(0,0,4)+\mu(1,1,1), \mu \in R
respectivamente. Determine P e Q, com P \in r e Q \in s, de modo que a distância de P e Q seja a menor possível.

Bem, essa questão esta na seção de máximos e mínimos do meu livro de cálculo de varias variaveis em que estudo. Embora tenha resposta abaixo, eu não consigo entender em como ele obteu a resposta, se alguem puder ajudar...

Resposta:
(\lambda,2\lambda,2) e (\mu,\mu,4+\mu) são pontos arbitrários de r e s, respectivamente:

\sqrt[]{{(\lambda-\mu)}^{2}+{(2\lambda-\mu)}^{2}+{(2+\mu)}^{2}} é a distância entre eles.
Basta, então, determinar (\lambda,\mu) que minimiza

g(\lambda,\mu)={(\lambda-\mu)}^{2}+{(2\lambda-\mu)}^{2}+{(2+\mu)}^{2}.
P=(-1,-2,2) e Q=(-\frac{5}{3},-\frac{5}{3},\frac{7}{3})
guisaulo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 27, 2012 21:14
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando

Re: [Minimização de funções] Distância entre duas retas reve

Mensagempor young_jedi » Sáb Jun 08, 2013 15:51

ele calculou as derivadas parciais da função g com relação a lambda e a u e igualou a 0 obtendo duas equação de duas variáveis
com isso ele montou um sistema e encontrou os valores da variáveis

comente se tiver duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Minimização de funções] Distância entre duas retas reve

Mensagempor guisaulo » Sáb Jun 08, 2013 16:48

obrigado @young_jedi consegui resolver a questão
guisaulo
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Ter Nov 27, 2012 21:14
Formação Escolar: GRADUAÇÃO
Área/Curso: TI
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: (FGV) ... função novamente rs
Autor: my2009 - Qua Dez 08, 2010 21:48

Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :


Assunto: (FGV) ... função novamente rs
Autor: Anonymous - Qui Dez 09, 2010 17:25

Uma função de 1º grau é dada por y=ax+b.
Temos que para x=3, y=6 e para x=4, y=8.
\begin{cases}6=3a+b\\8=4a+b\end{cases}
Ache o valor de a e b, monte a função e substitua x por 10.


Assunto: (FGV) ... função novamente rs
Autor: Pinho - Qui Dez 16, 2010 13:57

my2009 escreveu:Uma função polinomial f do 1° grau é tal que f(3) = 6 e f(4) = 8.Portanto o valor de f(10) é :



f(x)= 2.x
f(3)=2.3=6
f(4)=2.4=8
f(10)=2.10=20


Assunto: (FGV) ... função novamente rs
Autor: dagoth - Sex Dez 17, 2010 11:55

isso ai foi uma questao da FGV?

haahua to precisando trocar de faculdade.


Assunto: (FGV) ... função novamente rs
Autor: Thiago 86 - Qua Mar 06, 2013 23:11

Saudações! :-D
ví suaquestão e tentei resolver, depois você conta-me se eu acertei.
Uma função de 1º grau é dada por y=3a+b

Resposta :
3a+b=6 x(4)
4a+b=8 x(-3)
12a+4b=24
-12a-3b=-24
b=0
substituindo b na 1°, ttenho que: 3a+b=6
3a+0=6
a=2
substituindo em: y=3a+b
y=30+0
y=30
:coffee: