• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[LIMITES] Continuidade em intervalos

[LIMITES] Continuidade em intervalos

Mensagempor ericaguedes_ » Sex Jun 07, 2013 23:58

Alguém poderia me ajudar, por favor? Meu resultado tem dado a=b=1/2, mas está errado. :(
Imagem
Obrigada desde já!!
ericaguedes_
Novo Usuário
Novo Usuário
 
Mensagens: 3
Registrado em: Dom Mai 19, 2013 11:59
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Civil
Andamento: cursando

Re: [LIMITES] Continuidade em intervalos

Mensagempor e8group » Sáb Jun 08, 2013 12:40

(i)

Só para fixar as ideias ,imagine que tenhamos um t> 0 suficiente pequeno de modo que a diferença \beta -t e o acréscimo de t em \beta se aproxima cada vez mais de \beta .Suponha que a função h : A \mapsto B esteja definida em \beta e L =h(\beta) .Se (\beta-t,\beta +t)\setminus{\beta} \subset A parece razoável dizer que para quaisquer números x em (\beta-t,\beta +t)\setminus{\beta} sempre h(x) se aproxima de L já que (\beta - t ) \to \beta ; (\beta +t) \to \beta ,mas isto não necessariamente acontece ,é o caso das funções descontínuas em \beta .

(ii) Suponha (1) \beta = 3 ,(2) \beta = -3 .Vamos aplicar o raciocínio (i) em seu exercício .Como D_f =[-3,3] basta impor que quando x \in (3-t,3) ,tem-se sempre f(x)\to f(3) ,ou seja ,\begin{cases} \exists lim_{x\to 3^{-}} f(x)  \\ lim_{x\to 3^{-}} f(x) = f(3) \end{cases} .Desta forma você obterá b que satisfaça a continuidade da função no ponto 3 .Analogamente ,você achará a que satisfaça a continuidade de f no ponto -3 ,basta impor \begin{cases} \exists lim_{x\to -3^{+}} f(x)  \\ lim_{x\to -3^{+}} f(x) = f(-3) \end{cases} .

Tente concluir e comente as dúvidas .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 11 visitantes

 



Assunto: [calculo] derivada
Autor: beel - Seg Out 24, 2011 16:59

Para derivar a função

(16-2x)(21-x).x

como é melhor fazer?
derivar primeiro sei la, ((16-2x)(21-x))' achar o resultado (y)
e depois achar (y.x)' ?


Assunto: [calculo] derivada
Autor: MarceloFantini - Seg Out 24, 2011 17:15

Você poderia fazer a distributiva e derivar como um polinômio comum.


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:26

Funciona da mesma forma que derivada de x.y.z, ou seja, x'.y.z+x.y'.z+x.y.z' substitui cada expressão pelas variáveis e x',y' e z' é derivada de cada um


Assunto: [calculo] derivada
Autor: wellersonobelix - Dom Mai 31, 2015 17:31

derivada de (16-2x)=-2
derivada de (21-x)=-1
derivada de x=1
derivada de (16-2x)(21-x)x=-2.(21-x)x+(-1).(16-2x)x +1.(16-2x)(21-x)