• Anúncio Global
    Respostas
    Exibições
    Última mensagem

[Integral Duplo]

[Integral Duplo]

Mensagempor pires_ » Seg Mai 20, 2013 18:42

Calcule o integral duplo ??e^x³ dA na região R definida por ?y ? x ? 1 e 0 ? y ? 1.
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando

Re: [Integral Duplo]

Mensagempor young_jedi » Ter Mai 21, 2013 18:20

analiando o intervalo de integração podemos perceber que é possível mudar a ordem de integração sendo que esta área também pode ser reprsentada por

0\leq y\leq x^2

0\leq x\leq 1

então a integral ficaria

\int_{0}^{1}\int_{0}^{x^2}e^{x^3}dydx

tente concluir e comente as duvidas
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Duplo]

Mensagempor pires_ » Qua Mai 22, 2013 17:34

Como é a primitiva de e^x^3 ?
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando

Re: [Integral Duplo]

Mensagempor young_jedi » Qua Mai 22, 2013 18:56

faça a integral primeiro em y e depois em x fica mais fácil
se não entender comente..
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Duplo]

Mensagempor pires_ » Qua Mai 22, 2013 20:35

Depois fico com o integral de e^x^3 . x^2 em ordem a x , certo ? Depois não sei o que fazer ...
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando

Re: [Integral Duplo]

Mensagempor young_jedi » Qua Mai 22, 2013 21:02

muito bem você vai ficar com a seguinte integral

\int_{0}^{1}e^{x^3}.x^2dx

esta integral você faz por substituição

u=x^3

du=3x^2dx

então a integral fica

\int\frac{e^{u}}{3}du

=\frac{e^u}{3}

=\frac{e^{x^3}}{3}\Big|_0^1
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado

Re: [Integral Duplo]

Mensagempor pires_ » Qui Mai 23, 2013 12:11

o x^2 desaparece ?
pires_
Usuário Ativo
Usuário Ativo
 
Mensagens: 13
Registrado em: Dom Dez 09, 2012 16:17
Formação Escolar: ENSINO FUNDAMENTAL II
Área/Curso: ciências e tecnologia
Andamento: cursando

Re: [Integral Duplo]

Mensagempor young_jedi » Qui Mai 23, 2013 16:50

não é que ele desaprarece, você substitui ele

x^2.dx=\frac{du}{3}
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 8 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.