por Douglas16 » Sex Mar 08, 2013 17:33
![\lim_{x\rightarrow2} \frac{x*x-4}{x-[x]} \lim_{x\rightarrow2} \frac{x*x-4}{x-[x]}](/latexrender/pictures/d9741e463c448f35490c06dc13f403aa.png)
Onde [x] é maior número inteiro que é menor ou igual a x.
Minha resolução:
1º.
![\lim_{x\rightarrow{2}^{+}} \frac{x*x-4}{x-[x]}=\lim_{x\rightarrow{2}^{+}} \frac{x*x-4}{x-2}=\lim_{x\rightarrow{2}^{+}} \frac{(x+2)(x-2)}{(x-2)}=\lim_{x\rightarrow{2}^{+}} (x+2)=4 \lim_{x\rightarrow{2}^{+}} \frac{x*x-4}{x-[x]}=\lim_{x\rightarrow{2}^{+}} \frac{x*x-4}{x-2}=\lim_{x\rightarrow{2}^{+}} \frac{(x+2)(x-2)}{(x-2)}=\lim_{x\rightarrow{2}^{+}} (x+2)=4](/latexrender/pictures/23596568f1503a32058c810094e3339a.png)
2º.
![\lim_{x\rightarrow{2}^{-}} \frac{x*x-4}{x-[x]}=\lim_{x\rightarrow{2}^{-}} \frac{x*x-4}{x-1}=0 \lim_{x\rightarrow{2}^{-}} \frac{x*x-4}{x-[x]}=\lim_{x\rightarrow{2}^{-}} \frac{x*x-4}{x-1}=0](/latexrender/pictures/4181ca24a4cd06144a3424f3207f4b78.png)
Portanto o limite não existe.
Está correto?
-
Douglas16
- Usuário Parceiro

-
- Mensagens: 69
- Registrado em: Seg Fev 11, 2013 19:15
- Formação Escolar: ENSINO MÉDIO
- Área/Curso: Matemática
- Andamento: cursando
por e8group » Dom Mar 10, 2013 10:57
Bom dia ,temos uma função da forma

,para todo

em

e

,respectivamente ,

e

.
Considerando

.
Quando

e

.
Conclusão : você está correto , realmente os limites laterais diferem (sendo um deles

e

) e portanto o limite de

,

, não existe .
-
e8group
- Colaborador Voluntário

-
- Mensagens: 1400
- Registrado em: Sex Jun 01, 2012 12:10
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia Elétrica
- Andamento: cursando
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Será que está correta a resolução e o resultado
por Douglas16 » Dom Mar 10, 2013 16:55
- 3 Respostas
- 4721 Exibições
- Última mensagem por Douglas16

Dom Mar 10, 2013 23:37
Cálculo: Limites, Derivadas e Integrais
-
- [Álgebra I, exercicios] Exercicios que estão sem resolução.
por vitorullmann » Ter Mar 05, 2013 21:26
- 0 Respostas
- 3298 Exibições
- Última mensagem por vitorullmann

Ter Mar 05, 2013 21:26
Álgebra Elementar
-
- [Razões e Proporções] Dúvida na resolução e resultado
por chenz » Sex Set 04, 2015 17:54
- 1 Respostas
- 4276 Exibições
- Última mensagem por nakagumahissao

Qua Out 07, 2015 13:01
Teoria dos Números
-
- Ajuda para provar que 3 pontos estão alinhados.
por Danilo » Qua Mai 02, 2012 02:08
- 1 Respostas
- 2383 Exibições
- Última mensagem por Russman

Qua Mai 02, 2012 06:19
Geometria Analítica
-
- [Equação} meus resultados ñ estão certos me ajudem
por teilom » Dom Jul 07, 2013 13:20
- 1 Respostas
- 959 Exibições
- Última mensagem por Leticia_alves

Dom Jul 07, 2013 18:04
Equações
Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes
Assunto:
Taxa de variação
Autor:
felipe_ad - Ter Jun 29, 2010 19:44
Como resolvo uma questao desse tipo:
Uma usina de britagem produz pó de pedra, que ao ser depositado no solo, forma uma pilha cônica onde a altura é aproximadamente igual a 4/3 do raio da base.
(a) Determinar a razão de variação do volume em relação ao raio da base.
(b) Se o raio da base varia a uma taxa de 20 cm/s, qual a razão de variação do volume quando o raio mede 2 m?
A letra (a) consegui resolver e cheguei no resultado correto de

Porem, nao consegui chegar a um resultado correto na letra (b). A resposta certa é
Alguem me ajuda? Agradeço desde já.
Assunto:
Taxa de variação
Autor:
Elcioschin - Qua Jun 30, 2010 20:47
V = (1/3)*pi*r²*h ----> h = 4r/3
V = (1/3)*pi*r²*(4r/3) ----> V = (4*pi/9)*r³
Derivando:
dV/dr = (4*pi/9)*(3r²) -----> dV/dr = 4pi*r²/3
Para dr = 20 cm/s = 0,2 m/s e R = 2 m ----> dV/0,2 = (4*pi*2²)/3 ----> dV = (3,2/3)*pi ----> dV ~= 1,066*pi m³/s
Assunto:
Taxa de variação
Autor:
Guill - Ter Fev 21, 2012 21:17
Temos que o volume é dado por:
Temos, portanto, o volume em função do raio. Podemos diferenciar implicitamente ambos os lados da equação em função do tempo, para encontrar as derivadas em função do tempo:
Sabendo que a taxa de variação do raio é 0,2 m/s e que queremos ataxa de variação do volume quando o raio for 2 m:

Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.