• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Cálculo I: Reta Tangente e Área da função.

Cálculo I: Reta Tangente e Área da função.

Mensagempor Jhonata » Ter Fev 26, 2013 12:47

Olá, bom dia pessoal.

Estou com um problema na seguinte questão:

Considere a função f(x) = lnx

1. Ache a equação da reta tangente ao gráfico de f(x) quando x = e^2 ;

2. Calcule a área da região limitada por y = lnx, a reta tangente encontrada no item anterior e o eixo x.

------

O item 1 eu resolvi facilmente, pois a definição da reta tangente é y-f(a) = m(x-a), onde m é a inclinação da reta tangente (derivada da função).

E quando x = e^2 = a, y = 2 = f(a) a derivada de f é f'(x) = \frac{1}{x}

Então a reta tangente é y - 2 = \frac{1}{e^2}(x-e^2) \Rightarrow y = \frac{x}{e^2}+1

O problema é calcular a área... Não consigo nem imaginar como e onde a curva, a reta e o eixo x se interceptam... Se fosse só a reta e a curva, acho que seria mais fácil... De qualquer forma, quais seriam o intervalos de integração? Se alguém conseguir uma resolução detalhada, eu agradeço.
" A Matemática é a honra do espírito humano - Leibniz "
Avatar do usuário
Jhonata
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 66
Registrado em: Sáb Mai 26, 2012 17:42
Localização: Rio de Janeiro
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenheria Mecânica - UFRJ
Andamento: cursando

Re: Cálculo I: Reta Tangente e Área da função.

Mensagempor young_jedi » Sex Mar 01, 2013 22:22

o ponto onde a curva se intercepta a reta tangente é justamente no ponto de tangencia. ou seja

x=e^2

a reta intercepta o exio x em

\frac{x}{e^2}+1=0

x=-e^2

e a curva em

ln(x)=0

x=1

portanto a area seria

\int_{-e^2}^{e^2}\frac{x}{e^2}+1dx-\int_{1}^{e^2}ln(x)dx
young_jedi
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1239
Registrado em: Dom Set 09, 2012 10:48
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica - UEL
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: [Função] do primeiro grau e quadratica
Autor: Thassya - Sáb Out 01, 2011 16:20

1) Para que os pontos (1,3) e (-3,1) pertençam ao grafico da função f(X)=ax + b ,o valor de b-a deve ser ?

2)Qual o maior valor assumido pela função f : [-7 ,10] em R definida por f(x) = x ao quadrado - 5x + 9?

3) A função f, do primeiro grau, é definida pos f(x)= 3x + k para que o gráfico de f corte o eixo das ordenadas no ponto de ordenada 5 é?


Assunto: [Função] do primeiro grau e quadratica
Autor: Neperiano - Sáb Out 01, 2011 19:46

Ola

Qual as suas dúvidas?

O que você não está conseguindo fazer?

Nos mostre para podermos ajudar

Atenciosamente


Assunto: [Função] do primeiro grau e quadratica
Autor: joaofonseca - Sáb Out 01, 2011 20:15

1)Dados dois pontos A=(1,3) e B=(-3,1) de uma reta, é possivel definir a sua equação.

y_{b}-y_{a}=m(x_{b}-x_{a})

1-3=m(-3-1) \Leftrightarrow -2=-4m \Leftrightarrow m=\frac{2}{4} \Leftrightarrow m=\frac{1}{2}

Em y=mx+b substitui-se m, substitui-se y e x por um dos pares ordenados, e resolve-se em ordem a b.

3=\frac{1}{2} \cdot 1+b\Leftrightarrow 3-\frac{1}{2}=b \Leftrightarrow b=\frac{5}{2}



2)Na equação y=x^2-5x+9 não existem zeros.Senão vejamos

Completando o quadrado,

(x^2-5x+\frac{25}{4})+9-\frac{25}{4} =0\Leftrightarrow (x-\frac{5}{2})^2+\frac{11}{4}=0

As coordenadas do vertice da parabola são (\frac{5}{2},\frac{11}{4})

O eixo de simetria é a reta x=\frac{5}{2}.Como se pode observar o vertice está acima do eixo Ox, estando parabola virada para cima, o vertice é um mínimo absoluto.Então basta calcular a função para os valores dos extremos do intervalo.

f(-7)=93
f(10)=59