• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Integrais Impróprias

Integrais Impróprias

Mensagempor menino de ouro » Qui Jan 31, 2013 14:04

porque essas duas integrais diverge?


a)\int_{2}^{\infty}\frac{1}{xlnx}dx= diverge


b)\int_{2}^{\infty}\frac{1}{\sqrt[]{x}lnx}dx= diverge
menino de ouro
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 39
Registrado em: Ter Out 23, 2012 22:11
Formação Escolar: GRADUAÇÃO
Área/Curso: quimica
Andamento: cursando

Re: Integrais Impróprias

Mensagempor e8group » Qui Jan 31, 2013 16:42

Tomando ln(x)  = \lambda ,temos que :

\int_2^{\infty} \frac{dx}{x\cdot ln(x)} = \lim_{b\to \infty} \int_2^{b} \frac{d\lambda}{\lambda}  = \lim_{b\to \infty} ln(ln(x))\Bigg|_{2}^{b} =  \infty , ou seja não converge .
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 2 visitantes

 



Assunto: Simplifique a expressão com radicais duplos
Autor: Balanar - Seg Ago 09, 2010 04:01

Simplifique a expressão com radicais duplos abaixo:

\frac{\sqrt[]{\sqrt[4]{8}+\sqrt[]{\sqrt[]{2}-1}}-\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}-1}}}{\sqrt[]{\sqrt[4]{8}-\sqrt[]{\sqrt[]{2}+1}}}

Resposta:
Dica:
\sqrt[]{2} (dica : igualar a expressão a x e elevar ao quadrado os dois lados)


Assunto: Simplifique a expressão com radicais duplos
Autor: MarceloFantini - Qua Ago 11, 2010 05:46

É só fazer a dica.


Assunto: Simplifique a expressão com radicais duplos
Autor: Soprano - Sex Mar 04, 2016 09:49

Olá,

O resultado é igual a 1, certo?