• Anúncio Global
    Respostas
    Exibições
    Última mensagem

Limite - Funções trigonometricas

Limite - Funções trigonometricas

Mensagempor Jamyson » Sáb Jan 12, 2013 19:09

\lim_{x\rightarrow0} \frac{sen(x²+\frac{1}{x}) - sen \frac{1}{x}}{x}

A resultado é zero, segundo o livro do Guidorizzi.
Já usei as fórmulas trigonométricas, mas não consigo encontra a resposta.
Se poder me ajudar, agradeço!
Editado pela última vez por Jamyson em Sáb Jan 12, 2013 19:36, em um total de 2 vezes.
Jamyson
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Jan 12, 2013 18:44
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Limite - Funções trigonometricas

Mensagempor Jamyson » Sáb Jan 12, 2013 19:10

não existe esse 'Â'. na equação
Jamyson
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Jan 12, 2013 18:44
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando

Re: Limite - Funções trigonometricas

Mensagempor e8group » Sáb Jan 12, 2013 20:53

Boa noite .

Veja que sin(x^2 +  1/x) = sin(x^2)cos(1/x) + sin(1/x)cos(x^2)

Então ,

\frac{sin(x^2 + 1/x)-sin(1/x)}{x} = \frac{sin(x^2)cos(1/x) + sin(1/x)[cos(x^2)-1]}{x} = \frac{sin(x^2)cos(1/x)}{x} + \frac{sin(1/x)[cos(x^2)-1]}{x}

Assim tomando o limite quando x se aproxima de zero e aplicando as propriedades (limites) ,


\lim_{x\to0}\frac{sin(x^2 + 1/x)-sin(1/x)}{x} = \lim_{x\to0} \frac{sin(x^2)cos(1/x)}{x}  + \lim_{x\to0} \frac{sin(1/x)[cos(x^2)-1]}{x} \\\\
\quad \lim_{x\to0} \frac{sin(x^2)}{x} \cdot \lim_{x\to0} cos(1/x) + \lim_{x\to0} \frac{sin(1/x)[cos(x^2)-1]}{x} .

Resolvendo os limites por partes ,



Multiplicando-se o numerador e o denominador por x ,pelo limite fundamental \lim_{y\to0} \frac{siny}{y} = 1 obtemos ,

\lim_{x\to0} \frac{sin(x^2)}{x} \cdot \lim_{x\to0} cos(1/x) = \lim_{x\to0} \frac{sin(x^2)}{x^2} \cdot \lim_{x\to0} cos(1/x)\cdot x =  \lim_{x\to0} x \cdot \lim_{x\to0} cos(1/x) = 0

Entretanto por outro lado ,

\lim_{x\to0} \frac{sin(1/x)[cos(x^2)-1]}{x} = \lim_{x\to0} \frac{sin(1/x)}{x} \lim_{x\to0}[cos(x^2)-1] = \lim_{x\to0} \frac{sin(1/x)}{x} \cdot 0 = 0


Portanto ,

\lim_{x\to0}\frac{sin(x^2 + 1/x)-sin(1/x)}{x} = 0 .

Por favor ,os invés de digitar(por exemplo)
Código: Selecionar todos
cujo resultado será x² digite
Código: Selecionar todos
x^2
,cujo resultado será x^2 .

Espero que ajude ;
e8group
Colaborador Voluntário
Colaborador Voluntário
 
Mensagens: 1400
Registrado em: Sex Jun 01, 2012 12:10
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia Elétrica
Andamento: cursando

Re: Limite - Funções trigonometricas

Mensagempor Jamyson » Sáb Jan 12, 2013 23:55

Santriago, eu só tenho a agradecer, hoje mais cedo tentei responder com a ajuda de amigos e a questão não saio.
Muito Obrigadoo

\lim_{x\rightarrow0} \frac{sen(\frac{1}{x})}{x} Isto é 0 ou 1?
Jamyson
Novo Usuário
Novo Usuário
 
Mensagens: 7
Registrado em: Sáb Jan 12, 2013 18:44
Formação Escolar: GRADUAÇÃO
Área/Curso: licenciatura em matemática
Andamento: cursando


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes

 



Assunto: cálculo de limites
Autor: Hansegon - Seg Ago 25, 2008 11:29

Bom dia.

Preciso de ajuda na solução deste problema, pois só chego ao resultado de 0 sobre 0.
Obrigado

\lim_{x\rightarrow-1} x³ +1/x²-1[/tex]


Assunto: cálculo de limites
Autor: Molina - Seg Ago 25, 2008 13:25

\lim_{x\rightarrow-1} \frac{{x}^{3}+1}{{x}^{2}-1}

Realmente se você jogar o -1 na equação dá 0 sobre 0.
Indeterminações deste tipo você pode resolver por L'Hôpital
que utiliza derivada.
Outro modo é transformar o numerador e/ou denominador
para que não continue dando indeterminado.

Dica: dividir o numerador e o denominador por algum valor é uma forma que normalmente dá certo. :y:

Caso ainda não tenha dado uma :idea:, avisa que eu resolvo.

Bom estudo!


Assunto: cálculo de limites
Autor: Guill - Dom Abr 08, 2012 16:03

\lim_{x\rightarrow-1}\frac{x^3+1}{x^2-1}

\lim_{x\rightarrow-1}\frac{(x+1)(x^2-x+1)}{(x+1)(x-1)}

\lim_{x\rightarrow-1}\frac{(x^2-x+1)}{(x-1)}=\frac{-3}{2}