por rodrigonapoleao » Qua Dez 26, 2012 13:56
![\int_{0}^{8}\sqrt[]{2x}+\sqrt[3]{x}dx \int_{0}^{8}\sqrt[]{2x}+\sqrt[3]{x}dx](/latexrender/pictures/8771a0b595f8c1bf2ed34cfb8d5d4d46.png)
. nao sei como resolver por causa da raiz cubica
-
rodrigonapoleao
- Usuário Dedicado

-
- Mensagens: 26
- Registrado em: Seg Nov 19, 2012 14:34
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Economia
- Andamento: cursando
por lucas7 » Qua Dez 26, 2012 16:17
calculei e cheguei na resposta 100/3, vou repassar em alguns minutos a minha resolucao para te ajudar. abracos!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
-
lucas7
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Ter Fev 15, 2011 19:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por lucas7 » Qua Dez 26, 2012 16:45
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
-
lucas7
- Usuário Parceiro

-
- Mensagens: 53
- Registrado em: Ter Fev 15, 2011 19:43
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Engenharia de Controle e Automação
- Andamento: cursando
por DanielFerreira » Sex Dez 28, 2012 21:52
Resolução correta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
-
DanielFerreira
- Colaborador - em formação

-
- Mensagens: 1732
- Registrado em: Qui Jul 23, 2009 21:34
- Localização: Mangaratiba - RJ
- Formação Escolar: GRADUAÇÃO
- Área/Curso: Licenciatura em Matemática - IFRJ
- Andamento: formado
-
Voltar para Cálculo: Limites, Derivadas e Integrais
Se chegou até aqui, provavelmente tenha interesse pelos tópicos relacionados abaixo.
Aproveite a leitura. Bons estudos!
-
- Calcular a Integral de 1/4+x^2
por lucat28 » Sex Ago 12, 2011 15:07
- 5 Respostas
- 6967 Exibições
- Última mensagem por lucat28

Dom Ago 14, 2011 12:43
Cálculo: Limites, Derivadas e Integrais
-
- [Integral] como calcular
por ghiza » Seg Jul 15, 2013 11:23
- 2 Respostas
- 1678 Exibições
- Última mensagem por ghiza

Seg Jul 15, 2013 13:24
Cálculo: Limites, Derivadas e Integrais
-
- [INTEGRAL]Calcular área y=x^2
por krtc » Qua Jul 24, 2013 02:07
- 5 Respostas
- 3540 Exibições
- Última mensagem por Russman

Qua Jul 24, 2013 03:13
Cálculo: Limites, Derivadas e Integrais
-
- Calcular a area de uma curva, por integral
por bencz » Qui Ago 25, 2011 00:00
- 5 Respostas
- 3304 Exibições
- Última mensagem por LuizAquino

Sáb Set 03, 2011 21:37
Cálculo: Limites, Derivadas e Integrais
-
- [Integral definida] calcular sua derivada
por Ge_dutra » Dom Mai 12, 2013 21:49
- 0 Respostas
- 992 Exibições
- Última mensagem por Ge_dutra

Dom Mai 12, 2013 21:49
Cálculo: Limites, Derivadas e Integrais
Usuários navegando neste fórum: Nenhum usuário registrado e 4 visitantes
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
zig - Sex Set 23, 2011 13:57
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
Vennom - Sex Set 23, 2011 21:41
zig escreveu:![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[5]}](/latexrender/pictures/19807748a214d3361336324f3e43ea9a.png)
![{(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}} {(0,05)}^{-\frac{1}{2}}=\frac{10}{\sqrt[2]{5}}](/latexrender/pictures/3d7908e5b4e397bf635b6546063d9130.png)
Rpz, o negócio é o seguinte:
Quando você tem uma potência negativa, tu deve inverter a base dela. Por exemplo:
Então pense o seguinte: a fração geratriz de 0,05 é

, ou seja, 1 dividido por 20 é igual a 0.05 . Sendo assim, a função final é igual a vinte elevado à meio.
Veja:
A raiz quadrada de vinte, você acha fácil, né?
Espero ter ajudado.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:23
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Assunto:
simplifiquei e achei...está certo?????????????
Autor:
fraol - Dom Dez 11, 2011 20:24
Nós podemos simplificar, um pouco,

da seguinte forma:

.
É isso.
Powered by phpBB © phpBB Group.
phpBB Mobile / SEO by Artodia.