• Anúncio Global
    Respostas
    Exibições
    Última mensagem

calcular integral

calcular integral

Mensagempor rodrigonapoleao » Qua Dez 26, 2012 13:56

\int_{0}^{8}\sqrt[]{2x}+\sqrt[3]{x}dx. nao sei como resolver por causa da raiz cubica
rodrigonapoleao
Usuário Dedicado
Usuário Dedicado
 
Mensagens: 26
Registrado em: Seg Nov 19, 2012 14:34
Formação Escolar: GRADUAÇÃO
Área/Curso: Economia
Andamento: cursando

Re: calcular integral

Mensagempor lucas7 » Qua Dez 26, 2012 16:17

calculei e cheguei na resposta 100/3, vou repassar em alguns minutos a minha resolucao para te ajudar. abracos!
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: calcular integral

Mensagempor lucas7 » Qua Dez 26, 2012 16:45

Ok, vamos la:


\int_{0}^{8}\left( \sqrt[2]{2x}+\sqrt[3]{x} \right)dx

= \int_{0}^{8}\left( \sqrt[2]{2}\sqrt[2]{x}+\sqrt[3]{x} \right)dx

=\sqrt[2]{2}\int_{0}^{8}{x}^{1/2}dx + \int_{0}^{8}\sqrt[3]{x}dx

=\sqrt[2]{2}\int_{0}^{8}{x}^{1/2}dx + \int_{0}^{8}{x}^{1/3}dx

=\sqrt[2]{2}\frac{{x}^{3/2}}{3/2} + \frac{{x}^{4/3}}{4/3}, fazendo x=8 - x=0 temos:

\sqrt[2]{2}\times2\times\frac{\sqrt[2]{{8}^{3}}}{3}+3\times\frac{\sqrt[3]{{8}^{4}}}{4}

=\sqrt[2]{2}\times2\times\frac{\sqrt[2]{{8}^{2}\times8}}{3}+3\times\frac{\sqrt[3]{{8}^{3}\times{2}^{3}}}{4}


=\sqrt[2]{2}\times2\times8\times\frac{\sqrt[2]{8}}{3}+\frac{3\times8\times2}{4}

=\frac{16\times\sqrt[2]{16}}{3}+12

=\frac{16\times\sqrt[2]{4\times4}}{3}+12 = \frac{64}{3}+12

=\frac{64+36}{3} = \frac{100}{3}
O gênio, esse poder que deslumbra os olhos humanos, não é outra coisa senão a perseverança bem disfarçada.
Johann Goethe
lucas7
Usuário Parceiro
Usuário Parceiro
 
Mensagens: 53
Registrado em: Ter Fev 15, 2011 19:43
Formação Escolar: GRADUAÇÃO
Área/Curso: Engenharia de Controle e Automação
Andamento: cursando

Re: calcular integral

Mensagempor DanielFerreira » Sex Dez 28, 2012 21:52

Resolução correta!
"Sabedoria é saber o que fazer;
habilidade é saber como fazer;
virtude é fazer."
(David S. Jordan)
--------------------------------------------------------------------------------
DanielFerreira
Colaborador - em formação
Colaborador - em formação
 
Mensagens: 1732
Registrado em: Qui Jul 23, 2009 21:34
Localização: Mangaratiba - RJ
Formação Escolar: GRADUAÇÃO
Área/Curso: Licenciatura em Matemática - IFRJ
Andamento: formado


Voltar para Cálculo: Limites, Derivadas e Integrais

 



  • Tópicos relacionados
    Respostas
    Exibições
    Última mensagem

Quem está online

Usuários navegando neste fórum: Nenhum usuário registrado e 3 visitantes

 



Assunto: Unesp - 95 Números Complexos
Autor: Alucard014 - Dom Ago 01, 2010 18:22

(UNESP - 95) Seja L o Afixo de um Número complexo a=\sqrt{8}+ i em um sistema de coordenadas cartesianas xOy. Determine o número complexo b , de módulo igual a 1 , cujo afixo M pertence ao quarto quadrante e é tal que o ângulo LÔM é reto.


Assunto: Unesp - 95 Números Complexos
Autor: MarceloFantini - Qui Ago 05, 2010 17:27

Seja \alpha o ângulo entre o eixo horizontal e o afixo a. O triângulo é retângulo com catetos 1 e \sqrt{8}, tal que tg \alpha = \frac{1}{sqrt{8}}. Seja \theta o ângulo complementar. Então tg \theta = \sqrt{8}. Como \alpha + \theta = \frac{\pi}{2}, o ângulo que o afixo b formará com a horizontal será \theta, mas negativo pois tem de ser no quarto quadrante. Se b = x+yi, então \frac{y}{x} = \sqrt {8} \Rightarrow y = x\sqrt{8}. Como módulo é um: |b| = \sqrt { x^2 + y^2 } = 1 \Rightarrow x^2 + y^2 = 1 \Rightarrow x^2 + 8x^2 = 1 \Rightarrow x = \frac{1}{3} \Rightarrow y = \frac{\sqrt{8}}{3}.

Logo, o afixo é b = \frac{1 + i\sqrt{8}}{3}.